MTyang资料小铺个人店铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 28312
    文档数
  • 1807529
    被浏览
  • 112
    被下载
  • 0
    被收藏
日期:
全部
今天上传
一周内上传
一月内上传
一年内上传
三年内上传
页数:
全部
0-5 页
5-10 页
10-30 页
30-100 页
100-500 页
500 页以上
价格:
全部
0-2.00 元
2.00-5.00 元
5.00-15.00 元
15.00-30.00 元
30.00-50.00 元
50.00 元以上
格式:
全部
DOC
PPT
XLS
TXT
PDF
资源包
类型:
全部
VIP专享
优质文档
精选文档VIP+优质
最新上传 下载热度
  • 高考数学(理数)一轮复习学案5.1《平面向量的概念及线性运算》(含详解)
    15.1平面向量的概念及线性运算1.向量的有关概念(1)向量:既有____________又有____________的量叫做向量,向量的大小,也就是向量的____________(或称模).AB→的模记作____________.(2)零向量:____________的向量叫做零向量,其方向是________的.(3)单位向量:长度等于__________________的向量叫做单位向量.a||a是一个与a同向的____________.-a|a|是一个与a________的单位向量.(4)平行向量:方向________或________的________向量叫做平行向量.平行向量又叫____________,任一组平行向量都可以移到同一直线上.规定:0与任一向量____________.(5)相等向量:长度____________且方向____________的向量叫做相等向量.(6)相反向量:长度____________且方向____________的向量叫做相反向量.(7)向量的表示方法:用________表示;用____________表示;用________表示.2.向量的加法和减法(1)向量的加法①
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:8 页
    • 大小: 307.000 KB
    • 时间: 2022-11-19
  • 高考数学(理数)二轮复习专题6 第1讲《圆锥曲线的标准方程》练习 (含答案详解)
    专题复习检测A卷1.抛物线y=ax2的准线方程是y=1,则a的值为()A.14B.-14C.4D.-4【答案】B【解析】由题意知抛物线的标准方程为x2=1ay,所以准线方程y=-14a=1,解得a=-14.2.(湖北荆州监利实验高中月考)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定【答案】B【解析】∵M(a,b)在圆x2+y2=1外,∴a2+b2>1.∴圆心O(0,0)到直线ax+by=1的距离d=1a2+b2<1=r,则直线与圆相交.3.(湖南长沙一模)椭圆E的焦点在x轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E的标准方程为()A.x22+y22=1B.x22+y2=1C.x24+y22=1D.y24+x22=1【答案】C【解析】易知b=c=2,故a2=b2+c2=4,从而椭圆E的标准方程为x24+y22=1.4.(天津)已知抛物线y2=4x的焦点为F,准线为
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:4 页
    • 大小: 77.000 KB
    • 时间: 2022-11-19
  • (通用版)高考数学(文数)一轮复习考点梳理与过关练习11《导数的概念及计算》(含详解)
    考点11导数的概念及计算1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y=C(C为常数),21,,yxyxyx的导数.(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.•常见基本初等函数的导数公式:1()0();(),nnCCxnxnN为常数;(sin)cos;(cos)sinxxxx;(e)e;()ln(0,1)xxxxaaaaa且;11(ln);(log)loge(0,1)aaxxaaxx且.•常用的导数运算法则:法则1:uxvxuxvx=.法则2:·uxvxuxvxuxvx=+.法则3:2()()()()()[](()0)()()uxuxvxuxvxvxvxvx.一、导数的概念1.平均变化率函数()yfx从1x到2x的平均变化率为2121()()fxfxxx,若21xxx,2()yfx
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:19 页
    • 大小: 1023.500 KB
    • 时间: 2022-11-19
  • 新高考数学实战演练仿真模拟卷6(解析版)
    新高考数学实战演练仿真模拟卷一.选择题(共8小题)1.已知集合2{|320}Axxx„,{|124}xBx,则(AB)A.{|12}xx剟B.{|12}xx„C.{|12}xx„D.{|02}xx„【解析】解:集合2{|320}{|12}Axxxxx剟?,{|124}{|02}xBxxx,{|12}ABxx„.故选:C.2.已知a,b,c,d都是常数,ab,cd.若()()()2020fxxaxb的零点为c,d,则下列不等式正确的是()A.acdbB.cabdC.acbdD.cdab【解析】解:2()()2020fxxabxab,则由题意及韦达定理可得cdab,且()()20200dadb,()()20200cacb,若db,则da,又cd,则ca,cb,故cdab,这与cdab矛盾,dba,若cb,则ca,又dba,则cdab,这与cdab矛盾,cab,综上,cabd.故选:B.3.已知0.42x,25ylg,0.
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:16 页
    • 大小: 1021.500 KB
    • 时间: 2022-11-19
  • 高考数学(理数)一轮复习学案5.2《平面向量的基本定理及坐标表示》(含详解)
    15.2平面向量的基本定理及坐标表示1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使_______________________________.我们把不共线的向量e1,e2叫做表示这一平面内所有向量的一组__________.2.向量的夹角(1)已知两个________向量a和b,作OA→=a,OB→=b,则∠AOB=θ叫做向量a与b的夹角(如图).(2)向量夹角θ的范围是_______________.a与b同向时,夹角θ=________;a与b反向时,夹角θ=____________.(3)如果向量a与b的夹角是____________,我们就说a与b垂直,记作____________.3.平面向量的正交分解及坐标表示(1)平面向量的正交分解把一个向量分解为两个____________的向量,叫做向量的正交分解.(2)在平面直角坐标系内,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.任作一个向量a,�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:17 页
    • 大小: 669.500 KB
    • 时间: 2022-11-19
  • 高考数学(理数)二轮复习专题6 第2讲《直线与圆锥曲线的关系》练习 (含答案详解)
    专题复习检测A卷1.(东北三校联考)已知椭圆C:x2a2+y2b2=1(a>b>0),F(2,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2,则椭圆C的方程为()A.x24+y23=1B.x24+y22=1C.x23+y22=1D.x23+y2=1【答案】B【解析】由题意得c=2,b2a=1,a2=b2+c2,解得a=2,b=2.∴椭圆C的方程为x24+y22=1.2.(福建福州模拟)抛物线C的顶点为原点,焦点在x轴上,直线x-y=0与抛物线C交于A,B两点,若P(1,1)为线段AB的中点,则抛物线C的方程为()A.y=2x2B.y2=2xC.x2=2yD.y2=-2x【答案】B【解析】由题意可知A,B两点中必有一点是原点,不妨设A(0,0).由P(1,1)是线段AB的中点,可得B(2,2).设抛物线方程为y2=ax,将B(2,2)代入,可得22=2a,解得a=2,即抛物线方程为y2=2x.3.若一个圆的圆心是抛物线x2=4y的焦点,且该圆与直线y=x+3相切,�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:7 页
    • 大小: 98.000 KB
    • 时间: 2022-11-19
  • (通用版)高考数学(文数)一轮复习考点梳理与过关练习12《导数的应用》(含详解)
    考点12导数的应用1.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).2.生活中的优化问题会利用导数解决某些实际问题.一、导数与函数的单调性一般地,在某个区间(a,b)内:(1)如果()0fx,函数f(x)在这个区间内单调递增;(2)如果()0fx,函数f(x)在这个区间内单调递减;(3)如果()=0fx,函数f(x)在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0fx(()0fx�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:38 页
    • 大小: 2.337 MB
    • 时间: 2022-11-19
  • 新高考数学实战演练仿真模拟卷7(解析版)
    新高考数学实战演练仿真模拟卷一.选择题(共8小题)1.已知集合{2A,1},{|2}Bxax,若ABB,则实数a值集合为()A.{1}B.{2}C.{1,2}D.{1,0,2}【解析】解:ABBBA,{2A,1}的子集有,{2},{1},{2,1},当B时,显然有0a;当{2}B时,221aa;当{1}B时,122aa;当{2B,1},不存在a,符合题意,实数a值集合为{1,0,2},故选:D.2.已知131izi,则||(z)A.2B.2C.5D.3【解析】解:13(13)(1)121(1)(1)iiiziiii,则||5z.故选:C.3.设xR,则“250xx”是“|1|1x”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】解:250xx,05x,|1|1x,02x,05x推不出02x,0205xx,05x是02x�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:15 页
    • 大小: 896.000 KB
    • 时间: 2022-11-19
  • 高考数学(理数)一轮复习学案5.3《平面向量的数量积》(含详解)
    15.3平面向量的数量积1.数量积的概念已知两个非零向量a与b,我们把数量________________叫做a与b的数量积(或内积),记作____________,即a·b=________,其中θ是a与b的夹角,|a|cosθ(|b|cosθ)叫向量a在b方向上(b在a方向上)的____________.a·b的几何意义:数量积a·b等于___________________________________________.2.数量积的运算律及常用结论(1)数量积的运算律①交换律:___________________;②数乘结合律:_________________________;③分配律:______________________________.(2)常用结论①(a±b)2=________________________;②(a+b)·(a-b)=_________________;③a2+b2=0⇔______________________;④|||a-||b|________||a+||b.3.数量积的性质设a,b都是非零向量,e是与b方向相同的单位向量,θ是a与e的夹角,则①e·a=____________.②a⊥b⇔____________.③当a与b同向时,a·b=____________;当a与b反向时,a·b=_____
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:8 页
    • 大小: 268.500 KB
    • 时间: 2022-11-19
  • 高考数学(理数)二轮复习专题6 第3讲《圆锥曲线的综合问题》练习 (含答案详解)
    专题复习检测A卷1.(北京海淀区校级三模)若双曲线C1:x2a2-y2b2=1(a>0,b>0)与C2:y2a2-x2b2=1的离心率分别为e1和e2,则下列说法正确的是()A.e21=e22B.1e21+1e22=1C.C1与C2的渐近线相同D.C1与C2的图象有8个公共点【答案】A【解析】由题意,e1=a2+b2a>1,e2=a2+b2a>1,显然e21=e22.故选A.2.(河南焦作模拟)设P是椭圆x225+y29=1上一点,M,N分别是两圆(x+4)2+y2=1和(x-4)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为()A.9,12B.8,11C.8,12D.10,12【答案】C【解析】如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA|+|PB|=2a=10.连接PA,PB分别与圆相交于M,N两点,此时|PM|+|PN|最小,最小值为|PA|+|PB|-2R=8;连接PA,PB并延长,分别与圆相交于M,N两点,此时|PM|+|PN|最大,最大值为|PA|+|PB|+2R=12.故选C.3.已知
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:7 页
    • 大小: 132.500 KB
    • 时间: 2022-11-19
  • (通用版)高考数学(文数)一轮复习考点梳理与过关练习13《三角函数的基本概念、同角三角函数的基本关系与诱导公式》(含详解)
    考点13三角函数的基本概念、同角三角函数的基本关系与诱导公式1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出2,π的正弦、余弦、正切的诱导公式,能画出sin,cos,tanyxyxyx的图象,了解三角函数的周期性.(3)理解同角三角函数的基本关系式:22sincos1xx,sintancosxxx.一、角的有关概念1.定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.分类(1)按旋转方向不同分为正角、负角、零角.(2)按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角终边相同的角,连同角在内,可构成一个集合·3{|}60,Skk�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:25 页
    • 大小: 1.147 MB
    • 时间: 2022-11-19
  • 新高考数学实战演练仿真模拟卷8(解析版)
    新高考数学实战演练仿真模拟卷一.选择题(共8小题)1.复数2(1iii是虚数单位)的虚部是()A.1B.1C.iD.i【解析】解:复数22(1)2211(1)(1)2iiiiiiii,复数的虚部是1,故选:A.2.已知集合1{|0}1xAxx„,2{|(6)}BxZylnxx,则(AB)A.{0,1}B.{1,0,1}C.(1,1]D.[1,1]【解析】解:{|11}Axx„,2{|60}{|23}{1BxZxxxZx,0,1,2},{0AB,1}.故选:A.3.设向量a,b满足(1,3)ab,1ab,则||(ab)A.2B.6C.22D.10【解析】解:因为向量a,b满足(1,3)ab,1ab,所以222222()||2210ababaabbab,可得228ab,所以222||()2826ababaabb.故选:B.4.已知函数()fx的图象如图所示,则()fx的解析式可以是()A.1()fxxxB.()xefxxC.21()1fxxD.()lnxfxx【�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:14 页
    • 大小: 874.000 KB
    • 时间: 2022-11-19
  • 高考数学(理数)一轮复习学案5.4《平面向量的应用》(含详解)
    15.4平面向量的应用1.用向量方法解决几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.(2)通过向量运算,研究几何元素之间的关系,如平行、垂直、距离、夹角等问题.(3)把运算结果“翻译”成几何关系.2.向量的符号形式及图形形式的重要结论(1)向量的和与差的模:||a+b=___________________________________________,||a-b=________________________.(2)①G为△ABC重心的一个充要条件:___________________________________________;②O为△ABC外心的一个充要条件:___________________________________________;③P为△ABC垂心的一个充要条件:___________________________________________.(3)不同的三点A,B,C共线⇔存在α,β∈R,使得OA→=αOB→+βOC→,O为平面任意一点,且____________.3.向量坐标形式的几个重要结论
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:10 页
    • 大小: 346.000 KB
    • 时间: 2022-11-19
  • 高考数学(理数)二轮复习专题7 第1讲《参数方程与极坐标方程》练习 (含答案详解)
    专题复习检测A卷1.在平面直角坐标系xOy中,曲线C的参数方程为x=1+cosα,y=sinα(α为参数),若以射线Ox为极轴建立极坐标系,则曲线C的极坐标方程为()A.ρ=sinθB.ρ=2sinθC.ρ=cosθD.ρ=2cosθ【答案】D【解析】将曲线C的参数方程化为直角坐标方程,得(x-1)2+y2=1,即x2+y2-2x=0,∴曲线C的极坐标方程为ρ2-2ρcosθ=0,即ρ=2cosθ.2.在极坐标系中,过点2,π2且与极轴平行的直线方程是()A.ρ=0B.θ=π2C.ρcosθ=2D.ρsinθ=2【答案】D【解析】极坐标为2,π2的点的直角坐标为(0,2),过该点且与极轴平行的直线的方程为y=2,其极坐标方程为ρsinθ=2,故选D.3.(北京)已知直线l的参数方程为x=1+3t,y=2+4t(t为参数),则点(1,0)到直线l的距离是()A.15B.25C.45D.65【答案】D【解析】由x=1�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:4 页
    • 大小: 49.000 KB
    • 时间: 2022-11-19
  • 高考数学(理数)一轮复习学案5.5《数系的扩充与复数的引入》(含详解)
    15.5数系的扩充与复数的引入1.虚数单位为i,规定:i2=________,且实数与它进行四则运算时,原有的加法、乘法的________仍然成立.2.复数的概念形如:a+bi(a,b∈R)的数叫复数,其中a叫做复数的______,b叫做复数的__________.(1)当__________时,复数a+bi为实数.(2)当__________时,复数a+bi为虚数.(3)当__________且__________时,复数a+bi为纯虚数.3.复数相等的充要条件a+bi=c+di(a,b,c,d∈R)⇔________,特别地,a+bi=0⇔________________.4.复数z=a+bi(a,b∈R)与复平面上的点Z(a,b)、平面向量OZ→都可建立________的关系(其中O是坐标原点).5.在复平面内,实轴上的点都表示________;虚轴上的点除________外都表示________.6.复数的模向量OZ→的模r叫做复数z=a+bi(a,b∈R)的模,记作________或||a+bi.即||z=||a+bi=r=________(r≥0,r∈R).7.共轭复数一般地
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:19 页
    • 大小: 755.000 KB
    • 时间: 2022-11-19
  • (通用版)高考数学(文数)一轮复习考点梳理与过关练习14《三角函数的图象与性质》(含详解)
    考点14三角函数的图象与性质(1)能画出y=sinx,y=cosx,y=tanx的图象,了解三角函数的周期性.(2)理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间,22内的单调性.(3)了解函数sin()yAx的物理意义;能画出sin()yAx的图象,了解参数,,A对函数图象变化的影响.(4)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.一、正弦函数sinyx,余弦函数cosyx,正切函数tanyx的图象与性质函数sinyxcosyxtanyx图象定义域RR,2xxkkZ值域1,11,1R最值当π2π2xkkZ时,max1y;当22xkkZ时,min1y.当2xkkZ时,max1y;当2xkkZ时,min1y�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:39 页
    • 大小: 2.037 MB
    • 时间: 2022-11-19
  • 新高考数学实战演练仿真模拟卷9(解析版)
    新高考数学实战演练仿真模拟卷一.选择题(共8小题)1.已知集合{1M,2},集合N满足{0MN,1,2},则集合N的个数为()A.3B.4C.6D.7【解析】解:{1M,2},{0MN,1,2},N一定含元素0,可能含元素1,2,集合N的个数为:224.故选:B.2.已知a为正实数,复数1(aii为虚数单位)的模为2,则a的值为()A.3B.1C.2D.3【解析】解:a为正实数,复数1(aii为虚数单位)的模为2,则214a,解得3a,故选:A.3.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为()A.161B
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:17 页
    • 大小: 1.074 MB
    • 时间: 2022-11-19
  • 高考数学(理数)二轮复习专题7 第2讲《不等式选讲》练习 (含答案详解)
    专题复习检测A卷1.“ab≥0”是“|a-b|=|a|-|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】当ab≥0,a<b时,|a-b|≠|a|-|b|,故条件不充分.当|a-b|=|a|-|b|时,则a,b同号且|a|≥|b|.故条件必要.综上,“ab≥0”是“|a-b|=|a|-|b|”的必要不充分条件.2.若不等式|x-1|+|x+m|≤4的解集非空,则实数m的取值范围是()A.[-5,-3]B.[-3,5]C.[-5,3]D.[3,5]【答案】C【解析】∵|x-1|+|x+m|≥|1+m|,∴|1+m|≤4,解得-5≤m≤3.故选C.3.若实数a,b满足1a+2b=ab,则ab的最小值为()A.2B.2C.22D.4【答案】C【解析】∵1a+2b=ab,∴a>0,b>0.∴1a+2b≥22ab(当且仅当b=2a时取等号).∴ab≥22ab,解得ab≥22,即ab的最小值为22.4.设a,b,c是互不相等的正数,则下列不等式中不恒成立的是()A.(a+3)2<2a2+6a
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:4 页
    • 大小: 65.000 KB
    • 时间: 2022-11-19
  • 高考数学(理数)一轮复习学案6.1《数列的概念与简单表示法》(含详解)
    6.1数列的概念与简单表示法1.数列的概念(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的________.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做________),排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成________________,其中an是数列的第n项,叫做数列的通项.常把一般形式的数列简记作{an}.(2)通项公式:如果数列{an}的________与序号________之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,„,n})的函数(离散的),当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:9 页
    • 大小: 254.500 KB
    • 时间: 2022-11-19
  • 高考数学(理数)二轮复习专题8《数学思想方法选讲》练习 (含答案详解)
    专题复习检测A卷1.如果a1,a2,„,a8为各项都大于零的等差数列,公差d≠0,那么()A.a1a8>a4a5B.a1a8<a4a5C.a1+a8>a4+a5D.a1a8=a4a5【答案】B【解析】取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立,即a1a8<a4a5,排除A,C,D.故选B.2.已知非零向量a,b,若a+2b与a-2b互相垂直,则|a||b|等于()A.14B.4C.12D.2【答案】D【解析】由a+2b与a-2b互相垂直,得(a+2b)·a-2b)=0,化简,得|a|=2|b|,所以|a||b|=2.3.设x,y满足约束条件x≥0,y≥x,4x+3y≤12,则x+2y+3x+1的取值范围是()A.[1,5]B.[2,6]C.[3,10]D.[3,11]【答案】D【解析】x+2y+3x+1=1+2y+1x+1,令z=y+1x+1,z的几何意义是区域内的点到点M(-1,-1)连线的斜率.如图,A127,127,B(0,4),z的值满足kMA≤z≤kMB,kMA=1,kMB=5,故1≤z≤5,所以3≤x+2y+3x+1≤11.4.由命题�
    • 浏览量:0
    • 下载量:0
    • 价格: 2.00 元
    • 页数:5 页
    • 大小: 90.500 KB
    • 时间: 2022-11-19
可在后台配置店铺页面右侧广告
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?