【文档说明】2021年人教版高中数学选择性必修第二册随堂基础练习4.3.2《等比数列的前n项和》(2)(含答案).doc,共(6)页,231.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-38116.html
以下为本文档部分文字说明:
4.3.2等比数列的前n项和(2)基础练一、单选题1.已知数列{}na的前n项和22nSnn,则数列11{}nnaa的前6项和为()A.215B.415C.511D.10112.数列11111,2,3,424816…的前n项和为()A.211122nnnB.1111122n
nnC.211222nnnD.1112122nnn3.数列{}na的通项公式为11nann,nS为其前n项和.若9nS,则n=()A.99B.98C.97D.964.若数列na的
通项公式为221nnan,则数列na的前n项和nS为()A.221nnB.1221nnC.1222nnD.222nn5.数列na满足na=123...nn,则数列11nnaa
的前n项和为()A.2nnB.22nnC.1nnD.21nn6.已知等比数列na的前n项和为nS,若367,63SS,则数列nna的前n项和为()A.3(1)2nnB.3(1)2nnC.1(1)2nnD.1(1)2nn二、填空题7.已
知数列{}的通项,若数列{}的前n项和为Sn,则S8=_________8.11114473231nn9.已知数列111112123123n,,,,,,则其前n项的和等于_________.三、解答题10.已知等差数列{an}满足a2=0,a6+a
8=-10.(1)求数列{an}的通项公式;(2)求数列12nna的前n项和.参考答案1.【答案】A【解析】数列na的前n项和22nSnn,2n时,211nSn,两式作差得到
212nann,当1n时,也适合上式,所以21nan,所以111111212322123nnaannnn,裂项求和得到1111111223557131515,故选A.2.【答案】C【解析】112+2
14+318+…+(n+12n)=(1+2+…+n)+(12+14+…+12n)=(1)2nn+11[1()]22112n=12(n2+n)+1-12n=12(n2+n+2)-12n故选C3.【
答案】A【解析】数列{an}的通项公式an=11nn=n+1-n,Sn=(2﹣1)+(3﹣2)+…+(n+1-n)=n+1﹣1=9.解得n=99.故选A.4.【答案】C【解析】因为221nnan,所以数列na的前n项和12...nnS
aaa22(21)(23)...()(22...2212)(13...21)nnnn122(12)(121)22122nnnnn.故选C5.【答案】B【解析】(1)123...12
,2nnnnnnna114(1)(2)nnaann,所以数列11nnaa的前n项和为11114()233445(1)(2)Snn,111111111124()4()23344512222nSnnnn
,故选B.6.【答案】D【解析】当1q时,不成立,当1q时,31611711631aqqaqq,两式相除得3631171163qqq,解得:2q=,11a,即1112nnnaaq,12nnn
an,2112232......2nnsn,2ns211222......122nnnn,两式相减得到:21122......22nnnsn12212112nnnnn,所以112nn
sn,故选D.7.【答案】546【解析】由2nnan,可得823882128182222128546122S.故填546.8.【答案】31nn【解析】1111111111447323
134473131nnnnn故填31nn9.【答案】21nn【解析】由题意可知此数列分母为以1为首项,以1为公差的等差数列的前n项和,由公式可得:12nnnS,所以数列通项:1211211nSnnnn
,求和得:122111nnn.故填21nn10.【答案】(1)2nan;(2)12nn.【解析】(1)设等差数列{an}的公差为d,由已知条件可得11021210adad+=+=-,解得111ad
==,故数列{an}的通项公式为an=2-n.(2)设数列12nna的前n项和为Sn,∵1121212222nnnnnann-----==-,∴Sn=2211121222n-+++++-21231222nn-+++
+记Tn=21231222nn-++++,①则12Tn=231232222nn++++,②①-②得:12Tn=1+211112222nnn+++,∴12Tn=112112n--2nn,即Tn=4112n
--12nn.∴Sn=1212112n--4112n-+12nn=4112n--4112n-+12nn=12nn.