【文档说明】2021年人教版高中数学选择性必修第二册随堂重点练习4.3.2《等比数列的前n项和》(2)(含答案).doc,共(6)页,220.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-38016.html
以下为本文档部分文字说明:
4.3.2等比数列的前n项和(2)重点练一、单选题1.设数列na的前n项和2113nSnn,则数列231111,,,,naaa的前n项和为()A.1nnB.1nnC.1nnD.1nn2.定义12nnppp为n个正数
1p、2p、…、np的“均倒数”,若已知正整数列na的前n项的“均倒数”为121n,又14nnab,则12231011111bbbbbb()A.111B.112C.1011D.11123.化简21112222
22nnnSnnn的结果是()A.1222nnB.122nnC.22nnD.122nn4.已知数列na,定义数列12nnaa为数列na的“2倍差数列”,若na的“2倍差数列”的通项公式为1122nn
naa,且12a,若函数na的前n项和为nS,则33S()A.3821B.3922C.3822D.392二、填空题5.设函数1()22xfx,利用课本中推导等差数列前n项和公式的方法,可求得(5)(4)(0)(5)(6)fffff______
_________.6.数列na的前n项和为1121,2,1,log2nnnnnnSaSaba,则数列11nnbb的前n项和nT_____.三、解答题7.等差数列na的公差为2,248,,aaa分别等于等比数列nb的第2项,第3项,第4项.
(1)求数列na和nb的通项公式;(2)若数列nc满足12112nnncccbaaa,求数列nc的前2020项的和.参考答案1.【答案】D【解析】因为2113nSnn,
所以212111(1)1(1)33(1)nnnaSnnnnnSn,2n,因此1111(1)1nannnn,所以231111111111...1...1223111
nnaaannnn.故选D2.【答案】C【解析】由已知得12121nnaana,1221nnaaannS,当2n时,141nnnaSSn,验证知当1n时也成立,14nnabn,11111nnbbnn,1
2231011111111111110122334101111bbbbbb故选C3.【答案】D【解析】∵Sn=n+(n﹣1)×2+(n﹣2
)×22+…+2×2n﹣2+2n﹣1①2Sn=n×2+(n﹣1)×22+(n﹣2)×23+…+2×2n﹣1+2n②∴①﹣②式得;﹣Sn=n﹣(2+22+23+…+2n)=n+2﹣2n+1∴Sn=n+(n﹣1)×2+(n﹣2)×22+…+2×2n﹣2+2n﹣1n+2﹣2n+1
=2n+1﹣n﹣2故选D4.【答案】B【解析】根据题意得11122,2nnnaaa,11122nnnnaa,数列2nna表示首项为1,公差1d的等差数列,11,22nnnn
annan,123122232...2nnSn,23412122232...2nnSn,23412222...22nnnSn111212222212nnn
nnn,1212nn,133133122,33122nnSnS3922,故选B.5.【答案】32【解析】∵f(x)=122x,∴f(x)+f(1-x)=122x+1122x=22,∴由
倒序相加求和法可知f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=32故填326.【答案】1nn【解析】111111,21,22nnnnnnSanSa时,两式作差,得111111,222nnnnnaaan
化简得12,2nnana,检验:当n=1时,21122112,4,22aSaaaa,所以数列na是以2为首项,2为公比的等比数列,2nna,22loglog2nnnban,令
11111,11nnncbbnnnn1111111111.22334111nnTnnnn故填1nn.7.【答案】(1)2nan,2nnb;(2)2022201928.【解析】(1)
依题意得:2324bbb,所以2111(6)(2)(14)aaa,所以22111112361628,aaaa解得12.a2.nan设等比数列nb的公比为q,所以342282,4baqba又2224,422.nnnb
ab(2)由(1)知,2,2.nnnanb因为11121212nnnnnccccaaaa①当2n时,1121212nnncccaaa②由①②得,2nnnca,即12nnc
n,又当1n时,31122cab不满足上式,18,12,2nnncnn.数列nc的前2020项的和为:34202120208223220202S2342021412223220202设23420
20202120201222322019220202T③,则34520212022202021222322019220202T④,由③④得:2342021202220
20222220202T2202020222(12)20202122022420192,所以20222020201924T,所以2020S20222020420192
8T.