《1.2二次函数y=ax^2 bx c的图象与性质(5)》教学设计6-九年级下册数学湘教版

DOC
  • 阅读 89 次
  • 下载 0 次
  • 页数 4 页
  • 大小 97.500 KB
  • 2022-11-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
此文档由【小喜鸽】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《1.2二次函数y=ax^2 bx c的图象与性质(5)》教学设计6-九年级下册数学湘教版
可在后台配置第一页与第二页中间广告代码
《1.2二次函数y=ax^2 bx c的图象与性质(5)》教学设计6-九年级下册数学湘教版
可在后台配置第二页与第三页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的2 已有0人下载 下载文档0.90 元
/ 4
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
文本内容

【文档说明】《1.2二次函数y=ax^2 bx c的图象与性质(5)》教学设计6-九年级下册数学湘教版.doc,共(4)页,97.500 KB,由小喜鸽上传

转载请保留链接:https://www.ichengzhen.cn/view-19560.html

以下为本文档部分文字说明:

第1页(共4页)二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增

减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐

标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c(a≠0)的顶点坐标;②会用描点法画y=ax2+bx+c(a≠0)的图象并

能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(

x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?第2页(共4页)【教学说明】上述问题教师应放手

引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1如何画y=ax2+bx+c图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax2+bx+c的对称轴和顶

点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?学生回答,教师点评:抛物线y=ax2+bx+c=224()24bacbaxaa,对称轴为x=-2ba,顶点坐标为(-2ba

,244acba),当a>0时,若x>-2ba,y随x增大而增大,若x<-2ba,y随x的增大而减小;当a<0时,若x>-2ba,y随x的增大而减小,若x<-2ba,y随x的增大而增大.探究3二次函数y=ax2+bx+c在什么情况下有

最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1将下列二次函数写成顶点式y=a(x-h)2+k的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x2-3x+21②y=-3x2-18x-22解:①y=14x2-3x+21=14(x2-12x)+21=14(x

2-12x+36-36)+21=14(x-6)2+12.∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.第3页(共4页)②y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标

为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大

?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教

学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.已知二次

函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c

的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;SL第4页(共4页)④a+b+c=0.其中正确结论的序号是.(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1

;④a>1.其中正确结论的序号是.【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A2.B3.(1)①④(2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+

bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.y=a

x2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.

小喜鸽
小喜鸽
好文档,与你分享
  • 文档 161806
  • 被下载 27284
  • 被收藏 0
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?