深圳市高二下学期期末调研考试数学试题(及答案)

DOC
  • 阅读 52 次
  • 下载 0 次
  • 页数 17 页
  • 大小 1.147 MB
  • 2022-12-02 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【baby熊】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
深圳市高二下学期期末调研考试数学试题(及答案)
可在后台配置第一页与第二页中间广告代码
深圳市高二下学期期末调研考试数学试题(及答案)
可在后台配置第二页与第三页中间广告代码
深圳市高二下学期期末调研考试数学试题(及答案)
可在后台配置第三页与第四页中间广告代码
深圳市高二下学期期末调研考试数学试题(及答案)
深圳市高二下学期期末调研考试数学试题(及答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 17
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】深圳市高二下学期期末调研考试数学试题(及答案).docx,共(17)页,1.147 MB,由baby熊上传

转载请保留链接:https://www.ichengzhen.cn/view-84098.html

以下为本文档部分文字说明:

数学试卷第1页共17页绝密★启用前试卷类型:A深圳市2021年普通高中高二年级调研考试数学2021.7本试卷共6页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的

签字笔在答题卡指定位置填写自己的学校、姓名和考生号,并将条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损.2.选择题每小题选出答案后,用2B铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用0.5毫米黑色字迹的签字笔

作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将答题卡交回.一、单项选择题:本题共8道小题,每小题5分,共40分

。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合2{|()<0}Axxx,{|11}Bxx,则=ABA.{|12}xxB.{|01}xxC.{|12}xxx,或

D.{|01}xxx,或2.已知复数3i12iz(i为虚数单位),则||zA.1B.2C.3D.23.已知向量(1)ma,,(2)nb,,若||2a,ab,则mnA.3B.3C.6D.64.4名同学参加3个课外知识讲座,每

名同学必须且只能随机选择其中的一个,不同的选法种数是A.43B.34C.12D.245.已知数列{}na的前n项和27nSnn,若35ka,则kA.8B.7C.6D.56.已知p:“01a,1b”,q:“()xfxab(0a,且1)a的图象不过第一象限”

,则p是q的数学试卷第2页共17页A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.若1ab,01c,则下列式子成立的是A.loglogabccB.baacbcC.loglog

abbcacD.baab8.设0k,若存在正实数x,使得不等式127log30kxxk≥成立,则k的最大值为A.1eln3B.ln3eC.eln3D.ln32二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对

的得2分,有选错的得0分。9.若P是双曲线2219xyCm:上一点,C的一个焦点坐标为(40)F,,则下列结论中正确的是A.=5mB.渐近线方程为73yxC.||PF的最小值是1D.焦点到渐近线的距离是710.已知双曲函数是一类与三角函数性质类似的函

数.双曲余弦函数为eech2xxx,双曲正弦函数为eesh2xxx.则下列结论中正确的是A.(ch)shxxB.22(sh)(ch)1xxC.sh22shchxxxD.chx是奇函数11.设函数π()sin(2)3fxx的图象为曲线E,则下列结论中正确的

是A.π(0)12,是曲线E的一个对称中心B.若12xx,且12()()0fxfx,则12||xx的最小值为π2C.将曲线sin2yx向右平移π3个单位长度,与曲线E重合D.将曲线πsin()3yx上各点的横坐标缩短到原来的12,纵坐

标不变,与曲线E重合12.如图,菱形ABCD边长为2,60BAD,E为边AB的中点.将ADE△沿DE折起,使A到A,且平面ADE平面BCDE,连接AB,AC.ACBDEA'CBDE数学试卷第3页共17页则下列结论中正确的是A.BDACB.四面体ACDE的外接球表面

积为8πC.BC与AD所成角的余弦值为34D.直线AB与平面ACD所成角的正弦值为64三、填空题:本题共4小题,每小题5分,共20分。13.曲线()sinfxxx在π2x处的切线方程为.14.设抛物线220ypxp

()的焦点为F,抛物线上一点0(3)My,到F的距离为6,则0=y.15.中国工程院院士袁隆平,被誉为“世界杂交水稻之父”.他发明的“三系法”籼型杂交水稻,创建了超级杂交稻技术体系.某地种植超级杂交稻,产量从第一期大面积亩产760公斤,到第二期亩产810公斤,第三期亩产8

60公斤,第四期亩产1030公斤.将第一期视为第二期的父代,第二期视为第三期的父代,或第一期视为第三期的祖父代,并且认为子代的产量与父代的产量有关,请用线性回归分析的方法预测第五期的产量为每亩公斤.附:用最小二乘法求得线性回归方程为ˆˆybxa,其中121()()ˆ()niiin

iixxyybxx,ˆˆaybx.16.英国数学家泰勒发现了公式:357sin3!5!7!xxxxx…,瑞士大数学家欧拉凭着他非凡的数学洞察力,由此公式得到了下面的无穷级数之和,并最终给出了

严格证明.2221111234….其发现过程简单分析如下:当0x时,有246sin13!5!7!xxxxx…,容易看出方程sin0xx的所有解为:π,2π,…,πn,…,于是方程sin0xx可写成:222222(π)(2π)(π

)0xxxn……,改写成:22222222(1)110π2ππxxxn…….(*)比较方程(*)与方程246103!5!7!xxx…中2x项的系数,

即可得2221111234…__________.数学试卷第4页共17页ACBFED四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)已知ABC△的内角A,B,C的对边分别为a,b,c,2sincos2sinsinA

BCB.(1)求角A;(2)若4a,25bc,求ABC△的面积.18.(12分)已知等差数列{}na的前n项和为nS,数列{}nb为等比数列,满足122ab,530S,42b是3b与5b的等差中项.(1)求数列{}na,{}nb的通项公式;(2)若

nnncab,nT是数列{}nc的前n项和,求nT.19.(12分)如图,在五面体ABCDEF中,面ADEF为矩形,且与面ABCD垂直,90BCD,112ADCDBC,2DE.(1)证明:A

D//BC;(2)求平面ACE与平面BCEF所成的锐二面角的余弦值.数学试卷第5页共17页20.(12分)从某企业生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布表和频率分布直方图.(1)求m,

n,a的值;(2)求出这1000件产品质量指标值的样本平均数x(同一组中的数据用该组区间的中点值作代表);(3)由直方图可以认为,这种产品的质量指标值Z服从正态分布2()N,,其中近似为样本平均数x,2近似为样本方差2s,其中已计算得252.6.如果产品的质量指标值位于区间

(10.5039.50),,企业每件产品可以获利10元,如果产品的质量指标值位于区间(10.5039.50),之外,企业每件产品要损失100元,从该企业一天生产的产品中随机抽取20件产品,记X为抽取的20件产品所获得的总利润,求EX.附:

52.67.25,()0.6826Px,(22)0.9544Px.分组频数频率[2.5,7.5)20.002[7.5,12.5)m0.054[12.5,17.5)1060.106[17.5,22.5)1490

.149[22.5,27.5)352n[27.5,32.5)1900.190[32.5,37.5)1000.100[37.5,42.5)470.047合计10001.00000.010.020.030.040.050.060.072.57.51

2.517.522.527.532.537.542.5a质量指标值频率/组距数学试卷第6页共17页21.(12分)已知椭圆2222:10xyCabab()的长轴长为4,离心率为32,(1)求椭圆C的方程;(2)过椭圆C上的点00)(,Axy000xy()的直线l与x,y轴的交

点分别为M,N,且2ANMA,过原点O的直线m与l平行,且与C交于B,D两点,求ABD△面积的最大值.22.(12分)已知函数21()e(2)(1)2xfxxxax,aR,e=2.71828…是自然对数的底数.(1)当0a时,讨论()fx的单调性;(2)当2x≤时,()0fx≥,求a

的取值范围.2021年深圳市高二期末调研考试数学试题答案及评分参考一、单项选择题:题号12345678OAxDMNBy绝密★启封并使用完毕前试题类型:A数学试卷第7页共17页答案BBDACACA二、多项选择题:题号91011

12答案BCDACBDBCD三、填空题:13.yx;14.6;15.1384;16.2π6.8.解:因为313log3kxxk≥,所以3log3kxxk≥,因为0x,所以3log3kxxxkx≥即3log33log3xkxxkx≥.因为0x,设函数3xfxx

在(0),为增函数,所以3log0xkx≥所以3logxkx≤.又函数3logxyx在(0e),为增函数,在(e),为减函数,所以k的最大值为1eln3.命题意图:本题涉及函数与导数知识,重点考查函数的单调性以及构造新函数,对学生的逻辑推理能力,运算能力的都有

比较高的要求.15.解:因为810x,900y,所以31()()760810(810900)(860810)(1030900)11000iiixxyy,32221()(760810)8608105000iixx,所以11

000ˆˆˆ2.2,8825000baybx,所以第五期产量为10302.28821384y.命题意图:以粮食产量为命题背景,结合生活实例,激发学生爱国热情,向伟人学习.考查统计中的回归分析,重点考查学生数据分析

,对核心概念的理解.四、解答题:17.解:(1)法一:由2sincos2sinsinABCB得,2sincos2sin()sinABABB,„„„„„„„1分整理得,sin(2cos1)0BA.„„„„„„„2分

∵(0π)B,,sin0B,„„„„„„„3分数学试卷第8页共17页∴2cos10A,即1cos2A.„„„„„„„4分又(0π)A,,所以,2π3A.„„„„„„„5分法二:由2sincos2sinsinABC

B应用正弦定理得,2cos2aBcb,„„„„„„„1分即222222acbacbbc,„„„„„„„2分整理得,222acbbc,„„„„„„„3分于是2221cos22bcaAbc,„„„„„„„4分又(0π)A,,所以,2π3A

.„„„„„„„5分法三:由2sincos2sinsinABCB应用正弦定理,得2cos2aBcb,„„„„„„„1分由余弦定理,可得coscoscaBbA,代入上式,得„„„„„„„2分2cos0bAb.„„„„„„„3

分∵0b,∴1cos2A,„„„„„„„4分又(0π)A,,所以,2π3A.„„„„„„„5分(2)4a,25bc,由余弦定理,得2222cosabcbcA,„„„„„„„6分222()bcbcbcbc„

„„„„„„7分即1620bc,则4bc.„„„„„„„8分于是1sin2ABCSbcA△134322.„„„„„„„10分命题意图:本题是一道解三角形的常规题型.涉及三角形内角和、三角恒等变换、正弦定理、余弦定理、三角形面积等核心知识,重点考查逻辑推理和数学运算

等数学素养,同时关注化归与转化的思想方法.18.解:(1)设等差数列{}na的公差为d,等比数列{}nb的公比为q,由122ab,530S,42b是3b与5b的等差中项,521030d,2d„„„„„„

„„„„„„„„„„„„„„„„„1分则数学试卷第9页共17页22(1)2nann;„„„„„„„„„„„„„„„„„„„„2分12bq,4352(2)bbb,„„„„„„„„„„„„„„„„„„„„„„„„3分即32

41112(2)bqbqbq,„„„„„„„„„„„„„„„„„„„„„„„„„„4分11b,2q,„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„5分12nnb;„„„„„„„„

„„„„„„„„„„„„„„„„„„„„„„„6分(2)2nnnnbban,所以23122232...2nnTn,„„„„„„„„„„„„„„„„„„„„„7分23412122232

...2nnTn,„„„„„„„„„„„„„„„„„„„8分两式相减可得231222...22nnnTn,„„„„„„„„„„„„„„„„10分12(12)212nnn,„„„„„„„„„„„„„„„„„„„„„11分化简得,12(1)2n

nTn.„„„„„„„„„„„„„„„„„„„„„„„„12分优网命题意图:本题考查了等差数列和等比数列基本量的运算,错位相减法求和的相关知识,考查了方程和化归转化思想,考查了数学运算和逻辑推理的核心素养所.19.

解:(1)证明:∵面ADEF为矩形,ADEF,且AD平面BCEF,EF平面BCEF,„„„„„„„1分数学试卷第10页共17页ACBFEDxyz∴AD平面BCEF,„„„„„„„2分又AD平面ABCD,平面ABCD平面BCEFBC,„„„„„„„3分∴ADBC.„„„„„„„4分(2)

法一:(向量法)∵面ADEF为矩形面,DEAD,又面ADEF面ABCD,且面ADEF面ABCDAD,∴DE面ABCD,„„„„„„„5分由(1)知,ADBC.,又90BCD,∴ADCD,„„„„„„„6分∴DA,

DE,DC两两垂直,以DA,DE,DC所在直线分别为x轴,y轴,z轴建立图示空间直角坐标系,则(0,0,0)D,(1,0,0)A,(0,1,0)C,(0,0,2)E,(2,1,0)B,(1,0,2)F.„„„„„„„7分(1,1,0)AC,(1,0,2)AE,(2,0,0)BC

,(1,1,2)BF,„„„„„„„8分设平面ACE与平面BCEF的法向量分别为1111(,,)xyzn,2222(,,)xyzn,则110,0,ACnAEn220,0,BCnBFn∴1111020xyxz

,,22222020xxyz,,令11z,解得1(2,2,1)n,„„„„„„„9分令21z,解得2(0,2,1)n,„„„„„„„10分于是121212||2115cos||

||553nnnnnn,,„„„„„„„11分的余弦值为155.„„„„„12分所以平面BCEF与平面ACE所成的锐二面角数学试卷第11页共17页FEACBDM法二:(几何法)由(1)知,AD

BC,ADDE,∴BCDE,又90BCD,∴BCCD,且CDDED,„„„„„„„5分∴BC平面CDE,且BC平面BCEF,∴平面BCEF平面CDE.∴二面角ACEB与二面角ACED之和为π2.

„„„„„„6分易知AD平面CDE,∴ADCE.如图,在RtCDE△中作DMCE,垂足为M,连接AM,„„„„„„„7分ADDMD,∴CE平面ADM,则AMCE,„„„„„„8分AMD即为平面ACE

与平面ADE所成二面角的平面角.„„„„„„9分2633DECDDMCE,22153AMADDM,„„„„„„10分则15sin5ADAMDAM.„„„„„„11分即平面BCEF与平面ACE所成的锐二面角的余弦值为155.„„„„„„12分

法三:(构造空间角)如图,取BC中点G,连接AG,FG,则由(1)可知CGADEF,CGADEF且AD平面CDE,∴多面体AGFDCE是直三棱柱.„„„„„„5分如图在RtAFG△中作ANFG,

垂足为N,„„„„„„6分作MNCG,交CE于点M,连接AM,„„„„„„7分则MNCE,ANCE,数学试卷第12页共17页且MNANN,∴CE平面AMN,则AMCE,„„„„„„8分所以,AMN即为平面AC

E与平面CDE所成二面角的平面角.„9分2633AFAGANFG,22153AMANMN,„„„„„„10分15cos5MNAMNAM.„„„„„„11分所以平面BCEF与平面ACE所成的锐二面角的余弦值为155.„„„„12分命题

意图:本题是以五面体为载体,以长方体切割为背景,以空间几何体的结构,线线、线面平行的判定与性质,线面、面面垂直的判定与性质,空间角的构造与计算等核心知识为问题,重点考查综合几何法和向量法解决空间几何问题的基本能

力,和直观想象、逻辑推理与数学运算等数学素养,同时关注方程思想和化归与转化的思想,体现一题多解的策略,更体现开放大气的命题情怀.20.解:(1)结合频率分布表可以得到54m,0.352n,0.190.03

8.5a„„„„„„3分(2)抽取这1000件产品质量指标值的样本平均数x为:50.002100.054150.106200.149250.352300.190350.1400.04725x,„„„„„„„

„„„6分(3)因为52.67.25,由(2)知(2552.6)ZN,,„„„„„„„„8分从而10.5039.502527.252527.250.9544PZPZ,设Y为随机抽取20件产品质量指标值位

于(10.5039.50),之外的件数.依题意知(200.0456)YB,,所以200.04560.912EY,„„„„„„„„„„10分所以10010200.954499.68.EXEY答:该企业从一天生产的产品中随机抽取20件产品的利润为99.68.„„„„„„„„„„

12FEACBDMNG数学试卷第13页共17页分命题意图:本题涉及频率分布直方图、频率分布表、正态分布,二项分布,随机变量分布列等知识,主要考查学生数据分析、数学运算、逻辑推理等能力.21.解法一:(1)点P在椭圆上且24

a,2a,„„„„„„„„„„„„„„„„1分又椭圆离心率为32,3c,„„„„„„„„„„„„„„„„„„„„2分由222abc解得21b.„„„„„„„„„„„„„„„„„„„„3分椭圆的标准方程为:2214xy.„„„„„„„„„„„„„

„„„„„„4分(2)点A在椭圆上,220014xy,即220044xy,„„„„„„„„„„„„„„„5分设经过点A的直线方程为:00()yykxx,可得00(,0)yMxk,00(0,)Nykx.2ANMA,002yxk即002ykx.直线MN斜

率为002ykx,BDl,BD方程为002yyxx,„„„„„„„„„„„„„„„„„„„6分即0020yxxy,联立0022214yyxxxy,解得2202200416xxxy,022002||||16xxxy,2002

22220000042||8||211616yxBDxxyxy,„„„„„„„„„„„„„„7分点A到直线BD的距离为数学试卷第14页共17页0000002200|2|3||24yxxyxydyx,„„„„„„„„„„„8分0

022002200612116166ABCDxySBDdxyyx△,„„„„„„„„„„„„„„9分2222000022222200000016116116()()5944xxyyyxyxyx…

,„„„„„„„„„„„„„„10分220022001166302116yxyx,厔,2ABDS△„,„„„„„„„„„„„11分三角形ABD面积的最大值为2,当且仅当202024xy,即083x时,等号成立.„„12分解法二:(1)同解法一(2)设(,0)Mm,(0,)N

n,则00233mxny,00(,)Axy满足曲线220014xx上,则2224()433mn(),化简得,229mn.„„„„„„„„„„„„„„„„„„„„„„„5分直线的l方程为1xy

mn,即:0lnxmymn,原点到(0,0)直线l的距离为22||mndmn,„„„„„„„„„„„„„„6分易得直线的m方程为0nxmy,设11(,)Bxy,22(,)Dxy,联立方程组:22044nxmyxy,化

简得2222(4)40mnxm,数学试卷第15页共17页则221212||1()()4nBDxxxxm222222164mnmmmn222244mnmn,„„„„„„„„„„„„„„7分222222114||||224ABCmnmnSBDdmnmn

△222222222||1221444mnmnmnmnnm,„„„„„„„„„„„„„„„8分又22222214114()()9mnnmnm„„„„„„„„„„„„„„„„„„„

„9分222222221414(5)(52)199mnmnnmnm≥,„„„„„„„„„„„„„„„10分2ABDS△„,三角形ABD面积的最大值为2,„„„„„„„„„„„„„11分当且仅当222mn时,202024xy,即083x时,等号成立.„„„

„„„„„12分命题意图:本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,基本不等式的应用,考查了数形结合的方法和化归思想,考查学生直观想象和数学运算的核心素养.22.解法一:(1)当0a时,21e(24)2xfxxx,„„„„„„„„„„1分令0f

x,得15x,由0fx,得1515x,由0fx,得15x或15x,„„„„„„„„„„„„„„3分数学试卷第16页共17页所以fx在(,15)上单调递减,在(15,15)上单调递增,在(15,)上单调递减.„„„„„„

„„„„„4分(2)由当时,,得21(1)202exaxxx≥,记21(1)()22exaxgxxx,则e()(2)exxagxx,„„„„„„„„„5分①当0a≤时,则()0gx≥,可知()gx在(,2)上单调递增,且5(1)2e02ga,不满足当

时,,舍去;„„„„„„„„„„„„„„„„7分②当20ea时,令0gx,得12x,2lnxa,因为ln2a,所以当lnxa时,()0gx,当ln2ax时,()0gx,故()gx在(,ln)a上单调递减,在(

ln,2)a上单调递增,所以2min1()(ln)(ln)ln102gxgaaa≥,解得1313eea≤≤,因为132ee,所以132eea≤;„„„„„„„„„„9分③当2ea≥

时,则ln2a≥,此时当2x时,()0gx,故()gx在(,2]上单调递减,所以min2()(2)20eagxg,解得22ea≤,所以22e2ea≤≤;„„„„„„„11分综上所述,a的取值范围是132[e,2e].„„„„„„„„12分解法二:(1)同解

法一(2)由当时,,得21(1)202exaxxx≥,记21(1)()22exaxgxxx,则e()(2)exxagxx,„„„„„„„„„5分由2(2)20eag≥,得22ea

≤,由5(1)2e02ga≥,得2x≤()0fx≥2x≤()0fx≥2x≤()0fx≥数学试卷第17页共17页252e4ea≤≤;„„„„„7分①当252e4ea≤时,令0gx,得12x,2lnxa,因为ln2a

,所以当lnxa时,()0gx,当ln2ax时,()0gx,故()gx在(,ln)a上单调递减,在(ln,2)a上单调递增,所以2min1()(ln)(ln)ln102gxgaaa,解得13

13eea≤≤,因为135<e4e,132.732ln222eeee2e,所以132e2ea≤;„„„„„„„„10分②当22ea时,ln2a,此时当2x时,()0gx,故()gx在(,2]上单调递减,所以min2(

)(2)20eagxg≥,解得22ea≤,所以22ea;„„„„11分综上所述,a的取值范围是132[e,2e].„„„„12分命题意图:本题以基本初等函数的单调性问题、最值和不等式证明为载体,考查学生利用导数分析、解决问题的能力,考查学生分类讨论和化归转化的数

学思想,考查逻辑推理、数学运算等核心素养,具有较强的综合性.

baby熊
baby熊
深耕教育类文档。
  • 文档 5820
  • 被下载 238
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?