【文档说明】福州市2021-2022高三上学期数学期末质量检测试卷及答案.pdf,共(21)页,1.009 MB,由baby熊上传
转载请保留链接:https://www.ichengzhen.cn/view-84011.html
以下为本文档部分文字说明:
高三数学参考答案及评分细则(第1页共21页)2021-2022学年第一学期福州市高三期末质量检测数学试题(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1到3页,第Ⅱ卷3至4页.注意事项:1.答题前,考生务必在
试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其
它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将答题卡交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合*22,120ABxxxN,≤
,则ABA.B.211,,C.2112,,,D.21012,,,,【答案】C【解析】*1212BxxN≤≤,,所以AB2112,,,,故选C.【考查意图】本小题以集合为载体,主要考查集合的概念和基
本运算等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等数学核心素养,体现基础性.2.已知34iz,则+izzA.1+3iB.84iC.9+3iD.29+3i【答案】C【解析】因为34iz,所以+i5+34ii=9+3izz,故选C.【考查意图】本小题以复
数为载体,主要考查复数的基本概念等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等数学核心素养,体现基础性.3.已知甲、乙、丙、丁、戊五位同学高一入学时年龄的平均数、中位数均为16,方差为0.8,则三年后,下列判断错误的是
A.这五位同学年龄的平均数变为19B.这五位同学年龄的中位数变为19C.这五位同学年龄的方差仍为0.8D.这五位同学年龄的方差变为3.8【答案】D【考查意图】本小题以“五位同学的年龄”为载体,考查平均数、中位数、方差等基础知识;考查应用意识;考查逻辑推理等核心素养;体现基础性与应用性.高三数学
参考答案及评分细则(第2页共21页)4.613xx展开式中的常数项为A.540B.15C.15D.135【答案】D【解析】二项式613xx的展开式的第1r项为616(3)rrrr
TCxx36626(1)C3rrrrx.令3602r,解得4r,所以42651353TC,所以613xx展开式中的常数项为135.故选D.【考查意图】本小题以二项式为载体,主要考查二项
式定理等基础知识;考查运算求解能力、推理论证能力;考查数学运算、逻辑推理等核心素养,体现基础性.5.已知函数3310()0xxfxaxbx,>,,<为偶函数,则2+abA.3B.32C.12D.32【答案】B【解析】解法一、当0x时,0
x,所以33()()1+1fxxx,因为()fx为偶函数,所以3()()+1fxfxx,又3()fxaxb,所以1,1ab,所以32+2ab.解法二、因为()fx为偶函数,所以(1)1,(2)2,ffff所以2,89,abab
解得11ab,,经检验,11ab,符合题意,所以32+2ab.【考查意图】本小题以分段函数为载体,主要考查函数的奇偶性的定义等基础知识;考查运算求解能力、推理论证能力;考查数学运
算、逻辑推理等核心素养,体现基础性.6.已知一张边长为2的正方形纸片绕着它的一条边所在的直线旋转4弧度,则该纸片扫过的区域形成的几何体的表面积为A.2B.C.D.【答案】C【解析】因为一个边长为2的正方形纸片绕着一条边
旋转4,所形成的几何体为柱体,该柱体是底面半径r为2,高h为2的圆柱的八分之一,所以其表面积21228Srhr2222122222828,故选C.高三数学参考答案及评分细则(第3页共21页)【考查意图】本小题以旋转体为载体,主要考查旋转体的
体积等基础知识;考查空间想象能力、推理论证能力、运算求解能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性.7.已知函数sinfxx的部分图象如图所示,则fx的单调递增区间为
A.15,,66kkkZB.152,2,66kkkZC.15,,66kkkZD.152,2,66kkkZ【答案】D【解析】解法一、由2342,3mmmmZ,Z解得
2,3mm,Zsin2sin33fxxmx,令232kxkkZ,解得1566kxkkZ.故选D.解法二、由图象知411
,2,233TT又1453326x时,()fx取得最大值,排除A、B、C.故选D.【考查意图】本小题以三角函数的图象为载体,考查三角函数的图象和性质等基础知识;考查抽象概括能力、推理论证能力;考查数形结合思想;考查直观想象、逻辑推理等核心素养,体现基础性和综合性.8.已知O
为坐标原点,F是双曲线2222:100xyCabab>,>的左焦点,A为C的右顶点.过F作C的渐近线的垂线,垂足为M,且与y轴交于点P.若直线AM经过OP的中点,则C的离心率为A.2B.32C.3D.43【答案】A【解析】解法
一、如图所示,设AM交y轴于Q,过M作x轴的垂线,垂足为N.由双曲线性质可知,FMb,OFcOMa,,由FMN△∽FPO△,AQOAMN△∽△得高三数学参考答案及评分细则(第4页共21页)FNMNFOPO,AOQOANMN,以上两式
相乘得12FNAOFOAN,所以2212acacacac,所以2212acaacca,即12cac,所以1112e,解得2e.故选A.解法二、如图所示,设AM交y轴于Q,过M作x轴的垂线,垂足为N.不
妨设渐近线方程为byxa,则直线FP的方程为ayxcb,令0x,得Pacyb.由byxaayxcb,可得2aabMcc,,则2AMabbckaacac,所以直线AM的方程为byxaac,令0x得Qabyac
.因为Q为OP中点,所以2abacacb,整理得222222accbca,即2220caca,所以220ee,解得2e,或1e(舍去).故选A.解法三:如图所示,设AM交y轴于Q.由双曲线性质可知,FMb,OFc
,OMaOA,所以OMQOAQ.在RtOPM△中,Q为OP中点,所以MQOQPQ,所以QOMOMQOAQ,所以RtRtOMPAOQ△≌△,所以MPOQ,所以MPQ△为正三角形,所以60MPQ
,故30MFO,所以2,ca所以2e.(也可以利用tan30FPakb,即212bea),故选A.xyOFAMPQNxyOFAMPQN高三数学参考答案及评分细则(第5页共21页)【考查意图】本小题以双曲线为载体,主要考查双曲线的图象和性质、直线与双曲线
的位置关系等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性和综合性.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0
分.9.已知向量3111,,,mn=mn=,则A.∥mnnB.mnnC.2mnD.45,mn【答案】BCD.【解析】依题意,1202,m=mnmn,1[2n
=mn]11,mn,所以11110,,mnn,所以mnn,所以选项A错误,B正确.所以22mn,选项C正确;22cos222,mnmnmn,因为0180mn≤,≤,所以45,mn,选项D正确.【考查意图】本小题以平面向量为载体,考
查平面向量的坐标表示、平面向量共线与垂直、平面向量模长、夹角等基础知识;考查推理论证能力、运算求解能力;考查数形结合思想、函数与方程思想;考查直观想象、逻辑推理等核心素养,体现基础性和综合性.10.某人有6把钥匙,其中n把能打开门.如果随机地取一把钥匙试着开门,把不能开门的钥匙扔掉,设第
二次才能打开门的概率为p,则下列结论正确的是A.当1n时,16pB.当2n时,13p,C.当3n时,310pD.当4n时,45p【答案】AC【解析】当1n时,511656p,选项A正确;当2n时,4246515p,选项B错误;当3n时,3
336510p,选项C正确;当4n时,2446515p,选项D错误.故选AC.【考查意图】本小题以“取钥匙开门”为载体,考查随机事件的概率等基础知识;考查推理论证能力、运算求解能力与创新意识;考查化归与转化思想、或然与
必然思想;xyOFAMPQ高三数学参考答案及评分细则(第6页共21页)考查数学建模、逻辑推理、数学运算等核心素养,体现综合性、应用性.11.已知3030AB,,,,动点C满足2CACB,记C的轨迹为.过A的直线与交于PQ,两点,直线BP与的另一个交点
为M,则A.QM,关于x轴对称B.PAB△的面积的最大值为63C.当45PMQ时,42PQD.直线AC的斜率的取值范围为33,【答案】AC.【解析】设Cxy,,由2CACB得223xy2223xy,整理得的方程
为25x2y16,其图象是以50D,为圆心,半径4r的圆.故max11641222PABSABr△,选项B错误.因为2PAPB,2MAMB,所以PAPBMAMB,所以PABMAB,又轨迹的图象关于x轴对称,所以QM,关
于x轴对称,选项A正确.当45PMQ时,452PDQ90,则DPQ△为等腰直角三角形,242PQr,选项C正确.当直线AC与圆D相切时,CDAC,此时822ADrCD,切线AC的倾斜角为30和150,结合图象,可得直线AC的斜率的取值范围为3333
,.选项D错误.故选AC.【考查意图】本小题以圆为载体,主要考查直线与圆的位置关系、弦长、图象的对称性等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想、函数与方程思想;考查直观想象、逻辑推
理、数学运算等核心素养,体现基础性和综合性.12.设函数1()e1exxfxxx,则A.()(1)fxfxxy–1–2–3123456789–1–2–3–41234POABDQM高三数学参考答案及评分细则(第7页共21页)B.函数()fx有极大值为eC.若121xx
,则1122()exfxxfx≥D.若121xx<,且212x>,则21()1fxfx<【答案】ACD【解析】易验证A是正确的,也即函数()fx关于直线12x对称.故选项A正确;因为11()ee2eexxxxfxxx1+1e2exxxx,所
以1()02f,当12x时,113()+1e2e(ee)2xxxxfxxx,此时1xx,所以()0fx,故函数()fx在1(,)2上单调递增;由于函数()fx关于直线12x对称,
所以函数()fx在1(,)2上单调递减.所以函数()fx在12x处有极小值,也是最小值,1()e2f.故选项B错误;若121xx,且212x,则21112xx,由()fx在1(,)2上
单调递增得21()1fxfx.故选项D正确;由于函数()fx的最小值为e,所以1()efx,若121xx,则211xx,所以211fxfx,又因为111fxfx,所以12fxfx,故112211211211()()()()()exfx
xfxxfxxfxxxfxfx,故选项C正确.故选ACD.【考查意图】本小题以函数为载体,考查函数与导数、函数的基本性质、函数的极值等基础知识;考查抽象概括能力、推理论证能力、创新意识;考查数形结合思想、化归
与转化思想;考查数学抽象、逻辑推理、数学运算、直观想象等核心素养;体现综合性与创新性.第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.三、填空题:本大题共4小题,每小题5分,
共20分.13.曲线3()2fxxx在0x处的切线方程是.【答案】20xy高三数学参考答案及评分细则(第8页共21页)【解析】依题意得,(0)0f,232fxx,所以02f,所以
所求的切线方程为2yx,即20xy.【考查意图】本小题以三次函数为载体、考查导数的几何意义等基础知识;考查抽象概括能力、运算求解能力,考查化归与转化思想、数形结合思想;考查数学抽象、直观想象、数学运算等核心素养,体现基础性.14.在正三棱柱
111ABCABC中,12ABAA,F是线段11AB上的动点,则1AFFC的最小值为.【答案】62【解析】将正三棱柱111ABCABC上底面沿11AB展开至平面11ABBA上,如图所示,因为1112AAAC,且1190+60=150AAC,所以1111
2sin2AACACAA22sin7562,所以1AFFC的最小值为62.【考查意图】本小题以正三棱柱为载体,主要考查空间中动点到两定点的距离和最小值等基础知识;考查空间想象能力、推理论证能力;考查化归与转化思想;考查直观想象、逻辑推理等核心素
养,体现基础性.15.抛物线2:2(0)Eypxp的焦点为F,点A是E的准线与坐标轴的交点,点P在E上,若30PAF,则sinPFA.【答案】33【解析】过P作准线的垂线,垂足为B,所以30BPAPAF,PBPF.在RtBPA△中,cos30PBPA,即在PA
F△中,cos30PFPA,xyOAPFB高三数学参考答案及评分细则(第9页共21页)又由正弦定理sinsinPAPFPFAPAF,所以sin303sinsincos303PAPFAPAFPF.【考查意图】本小题以抛物线为载体,主要考查抛物线的方程与定义、解三角
形等基础知识;考查运算求解能力、推理论证能力;考查数形结合思想;考查数学运算、逻辑推理等数学核心素养,体现基础性.16.函数yx称为高斯函数,x表示不超过x的最大整数,如0.90,lg991.已知数列na满足3
3a,且1nnnanaa,若lgnnba,则数列nb的前2022项和为.【答案】4959【解析】利用累乘法(或13113nnaaann),得nan.记nb的前n项和为nT,当19n时,0l
g1na时,lg0nnba;当1099n时,1lg2na时,1nb;当100999n时,2lg3na时,2nb;当10002022n时,3lg4na时,3nb;所以2022122022lglglg9019002102334959Ta
aa.【考查意图】本小题以数列为载体,考查数列求通项、递推数列、数列前n项的和等基础知识;考查推理论证能力、运算求解能力、创新意识;考查数形结合思想、化归与转化思想;考查数学抽象、逻辑推理、直观想象、数学运算等核心素养;体现综合性与创新性.四、解答题:本大题共
6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)设数列na是首项为1的等差数列,若2a是1a,5a的等比中项,且23aa.(1)求na的通项公式;(2)设11nnnb
aa,求数列nb的前n项的和nS.【考查意图】本小题主要考查等比中项、等差数列的通项公式、裂项相消求和等基础知识;考查推理论证能力、运算求解能力;考查化归与转化思想、函数与方程思想;考查逻辑推理、数学运算等核心素养,体现基础
性、综合性.满分10分.【解】(1)设等差数列na的公差为d,因为11a,且2a是1a,5a的等比中项,所以2215aaa,···································································
················1分高三数学参考答案及评分细则(第10页共21页)所以21114adaad,·················································
·················2分又因为11a,所以2114dd解得2d,或0d,··········································································3分
又因为23aa,所以0d,所以2d,·······································································4分所以111212
1nandnan.···············································5分(2)由(1)知,21nan,因为11nnnaba,所以1111()(21)(21)22121nbnnnn
,············································7分所以11111111(1)()()()2335572121nSnn··················
·········8分=11(1)221n.·········································································9分.21nn··································
···············································10分18.(12分)为让人民享受到更优质的教育服务,我国逐年加大对教育的投入.下图是我国2001年至2019年间每年普通本科招生数y(单位:万人)的条形图.普通高等学校本科招生数(万人)
(数据来源:国家统计局网站)为了预测2022年全国普通本科招生数,建立了y与时间变量t的三个回归模型.其中根据2001年至2019年的数据(时间变量t的值依次为12319,,,,)建立模型①:高三数学参考答案及评分细则(第11页共21页)0.058ˆ166.9ety,相关指数210
.87R;模型②:ˆ152.416.3yt,相关系数20.97r,相关指数220.95R.根据2014年至2019年的数据(时间变量t的值依次为1236,,,,)建立模型③:ˆ372.89.8yt
,相关系数30.99r,相关指数230.99R.(1)可以根据模型①得到2022年全国普通本科招生数的预测值为597.88万人,请你分别利用模型②、③,求2022年全国普通本科招生数的预测值;(2)你认为用哪个
模型得到的预测值更可靠?并说明理由.【考查意图】本小题主要考查回归分析、相关指数、相关系数等基础知识;考查数据处理能力、推理论证能力、运算求解能力与创新意识;考查函数与方程思想、化归与转化思想;考查数学建模、逻辑推理、数学运算等核心素养,体现综合性、应用性与创新性.满分12分.【解
】(1)利用模型②,2022年全国普通本科招生数的预测值为ˆ152.416.322511y(万人);·······················································3分利用模型③,2022年全国普通本科招生数的预测值为ˆ372.89.8946
1y(万人).·························································6分(2)利用模型③得到的预测值更可靠.················································7分理由如下:
(ⅰ)从条形图可以看出,2001年至2010年,2011年至2019年两个区间增长率有显著区别,2014年至2019年招生数增长速度趋于稳定,线性关系更为明显,故模型③比模型①、②能更好地描述时间变量与招生数的变化趋势.·································
··9分(ⅱ)从计算结果可以看出,模型③的相关指数230.99R最高,说明其拟合效果最好.模型③的相关系数30.99r比模型②的相关系数20.97r高,说明模型③的两变量的相关性比模型②更强,因此利用模型③得到的预测值更可靠.
···························12分19.(12分)记ABC△的内角A,B,C的对边分别为a,b,c.已知coscoscaBcA.(1)试判断ABC△的形状,并说明理由;(2)设点D在边AC上,若ADBD,sinsinADBABC,求ab
的值.【考查意图】本小题主要考查解三角形等基础知识;考查推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性、综合性.满分12分.【解】解法一、(1)ABC△为直角三角形或AB
C△为等腰三角形.·················1分理由如下:在ABC△中,因为coscoscaBcA,根据正弦定理得,sinsincossincosCABCA,···················
··········································2分高三数学参考答案及评分细则(第12页共21页)ABCD又因为π()CAB,所以sin()sincossincosABABCA,
即sincoscossinsincossincosABABABCA,即cossinsincosABCA,···································································3分所以cos0A或sins
inBC,······························································4分若cos0A,则π2A,故此时ABC△为直角三角形.·········
······················5分若sinsinBC,则由正弦定理得,bc.故此时ABC△为等腰三角形.综上,ABC△为直角三角形或ABC△为等腰三角形.···················
··············6分(2)由(1)知,π2A或bc,若π2A,则ADBD,这与已知条件ADBD相矛盾,所以π2A;·······················································
································7分所以bc,所以ABCC.又因为sinsinADBABC,所以sin(π)sinADBC,即sinsinBDCC,故BDCC,·······························
·················································8分所以ADBC.在DBC△中,sinsinBCDBCBDCDC,在ABC△中,sinsinBCABCAAC,················
···········································9分两式相乘得2BCACDC,·······················································
·········10分(也可通过等腰ABC△BDC△得到2BCACDC.)又ACADACBDACBCCD,所以2()abba,··········································································
···11分解得512ab或512ab(舍去).所以ab的值为512.········································································12分解法二、(1)ABC△为直角三角
形或ABC△为等腰三角形.··························1分理由如下:因为coscoscaBcA,高三数学参考答案及评分细则(第13页共21页)ABCD根据余弦定理,得22222222acbbcacacacbc,·····
··························2分22222222acbbcacb,所以22222222acbbcaccb,·············································
···········3分即2222222222cacbbcacb,所以222222()()bcbacbca,······················································4分所以2
22()()()()0bcbcbcbbccabc,所以222()()0bcbca,···············································
·················5分即222abc或bc,所以ABC△为直角三角形或ABC△为等腰三角形.····································6分(2)由(1)知,π
2A或bc,若π2A,则ADBD,这与已知条件ADBD相矛盾,所以π2A;··········7分所以bc,所以ABCC.又因为sinsinADBABC,所以sin(π)sinADBC,即
sinsinBDCC,故BDCC,················································································8分所以ADBC.又因为ADBD,所以ADBA,即BD平分ABC
,··············································································9分所以BADABCDC,·······································
········································10分所以caaba,所以baaba,······································
··········································11分解得512ab或512ab(舍去).所以ab的值为512.·····························
···········································12分高三数学参考答案及评分细则(第14页共21页)20.(12分)如图,在三棱锥DABC中,DA底面ABC,1ACBCDA
,2AB,E是CD的中点,点F在DB上,且EFDB.(1)证明:DB平面AEF;(2)求二面角ADBC的大小.【考查意图】本小题主要考查空间直线与直线、直线与平面的位置关系,二面角等基础知识;考查推理论证能力、运算求解能力与空间想象能力;考查数形结合思想;考查直观想象、逻辑推理、数
学运算等核心素养,体现基础性、综合性.满分12分.【解】解法一、(1)DA平面ABC,且BC平面ABC,DABC,12ACBCAB,,222ACBCAB,ACBC,·······················································
··1分DAACA,BC平面DAC,······················································2分AE平面DAC,BCAE.又DAAC,E是C
D的中点,DCAE,······················································································3分又BCDCC,AE平面DBC.DB平面DBC,DBAE,···············
···········································4分,EFDBEFAEE,DB平面AEF.········································
·····································5分(2)过点A作AGBC∥,由(1)知BC平面DAC,所以AG平面DAC.以点A为原点,分别以向量ACAGAD,,为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系Axyz,·······
······································································6分则0,0,0A,1,0,0C,1,1,0B,0,0,1D,则0,0,1,AD1,1,11,0,1BDCD
,,设平面ADB的法向量111,,mxyz,则0,0,mADmBD所以11110,0,zxyz令11y,DEFABC高三数学参考答案及评分细则(第15页共21页)则1,1,0.m··
···················································································8分设平面DBC的法向量为222,,nxyz,则0,0,nCDnBD所以222220,0
,xzxyz令21x,则1,0,1n.·····································································10分
所以11cos,222mn,··························································11分又因为二面角ADBC的平面角为锐角,
所以二面角ADBC的大小为3.·····················································12分解法二、(1)DA平面ABC,且BC平面ABC,DABC,12ACBCAB,,2
22ACBCAB,ACBC,·························································1分DAACA,BC平面DAC,····················································
·························2分过点A作AGBC∥,所以AG平面DAC.以点A为原点,分别以向量ACAGAD,,为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系Axyz
,则110,0,0,1,1,0,0,0,10,,22ABDE,,所以1,1,1DB,110,,22AE,11101(1)022DBAE,·································
·······································································4分DBAE,DBAE,DBEF,且AEEFF,DB平
面AEF.················································································5分(2)因为EFDB,由(1)得DBAF,所以AFE为二面角ADBC的
平面角,··············································6分因为1,0,0C,由(1)知,1,1,1DB.设,,Fxyz,则,,z1DFxy.·
····························································7分高三数学参考答案及评分细则(第16页共21页)因为点F在DB上,所以存在实数k,使得DFkDB,所以,,1xkykzk
,即,,1Fkkk,因为AFDB,所以0AFDB,··························································8分所以110kkk,解
得13k,················································9分所以点112,,333F,所以111,,366FE,112,,333FA,·············
··10分所以116cos26663FAFEAFEFAFE,·············································11分又因为0,AFE,所以3AFE.所以二面角ADBC的大小为.3···············
·········································12分解法三、(1)略,同解法一;(2)因为EFDB,由(1)得DBAF,所以AFE为二面角ADBC的平面角,···············
·······························6分DA底面ABC,,,DAACDAAB因为1ACDA,所以1222AEDC,···············································7
分因为2AB,所以1122DABSDAABDBAF△,所以126312DAABAFDB,················································
·········9分由(1)知,AE平面DBC,因为EF平面DBC,所以AEEF,················································································10分所以232sin
263AEAFEAF,·························································11分因为AFE为锐角,所以3AFE,所以二面角ADBC的大小为.3·······················
·································12分21.(12分)高三数学参考答案及评分细则(第17页共21页)定义:若点00(,)xy,00(,)xy在椭圆2222:1xy
Mab(0ab>>)上,且满足0000220xxyyab,则称这两点是关于M的一对共轭点,或称00(,)xy关于M的一个共轭点为00(,)xy.已知点A(3,1)在椭圆22:1124x
yM,O为坐标原点.(1)求点A关于M的所有共轭点的坐标;(2)设点P,Q在M上,且PQOA∥,求点A关于M的所有共轭点和点P,Q所围成封闭图形面积的最大值.【考查意图】本小题主要考查新定义、点与椭圆的位
置关系、平面向量共线、四边形的面积等基础知识;考查推理论证能力、运算求解能力;考查函数与方程思想、数形结合思想、化归与转化思想;考查直观想象、逻辑推理、数学运算等核心素养,体现基础性、综合性与创新性.满分12分.【解】解法一、(1)设点A关于
M的共轭点的坐标为11(,)xy,依题意得,11221130,1241124xyxy,····································································2分解得113,3xy,或11
3,3xy;·····························································4分即A关于M的两个共轭点1B,2B的坐标分别为3,3,3,3.········5分(2)由(1)知,1B3,3,2B3,3
,所以12BB=22333326.··········································6分设点,ppPxy,,qqQxy.则22221,1241124ppqqxyxy,两式相减得()()()()0124pq
pqpqpqxxxxyyyy,········7分又PQ∥OA,所以13pqpqyyxx,····························································
8分故()pqpqyyxx,则22pqpqyyxx,高三数学参考答案及评分细则(第18页共21页)所以线段PQ的中点在直线0xy上,即线段PQ被12BB平分.···············
····9分设点,ppPxy到0xy的距离为d,则点1B,P,2B,Q所围成四边形面积121121=22262PBBBPBQSSBBdd△四边形,······················································
······················································10分设过P与直线0xy平行的直线l为xym,当l与M相切时,d取得最大值.由22,1124xymxy
,消去y得2246340xmxm,令22364840mm,解得4m,············································11分所以4222maxd,故点1B,P,2B,Q所围成四边形面积的最大值为83
.·························12分解法二、(1)略,同解法一.(2)由(1)知,1B3,3,2B3,3,设点,ppPxy,,qqQxy.由PQOA∥,得直线PQ的斜率为13,·····················
································6分故设直线PQ的方程为13yxt,联立221,31124yxtxy,消去y得,22469360xtxt,········
························7分由22236436(4)36(163)0ttt,解得443333t,且32pqxxt,21(936)4pqxxt,···
··················································8分所以2211()3pqPQxx221031()4936924tt210163
2t.······································································9分设1B3,3,2B3,3到直线PQ的距离分别为1d,2d.高三数学参考答案及评分细则(第19页共21页)则134310td
,243310td,由443333t,得1243343383101010ttdd.······················10分所以四边形1BP2BQ面积等于12121122BPBQSPQdPQd121()2PQdd2110831632210t
223163t···········································································11分故当0t时,12BPBQS取得最大值83,即点1B,P,2B,Q所围成封闭图形面积的
最大值为83.······················12分22.(12分)设函数2()lnfxaxxx.(1)当1a时,判断()fx的单调性;(2)若函数()fx的图象与x轴没有公共点,求a的取值范围.【考查意图】本小题主要考查函数的单调性、方程有解、
导数的应用等基础知识;考查抽象概括能力、推理论证能力、运算求解能力与创新意识,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想、有限与无限思想;考查数学抽象、直观想象、逻辑推理、数学运算等核心素养,体现综合性、应用性与创新性.满分12分.【解】解法一、(1)当1a
时,2()ln0fxxxxx,·····················1分所以2212112121()21.xxxxxxfxxxxxx··············2
分当01x时,()0fx,所以()fx在(0,1)单调递增;·······························3分当1x时,()0fx,所以()fx在(1,)单调递减.··································
·4分(2)因为函数()fx的图象与x轴没有公共点,所以()0fx恒成立.若()0fx有解,则关于x的方程2ln0axxxx有解,等价于关于x的方程2ln0xxaxx有解.······
·······································6分令2ln()0xxpxxx,则312ln()xxpxx,·······································7分高三数学参考答案及评分细
则(第20页共21页)令()12ln0qxxxx,则2()10qxx恒成立,()qx在(0,)上单调递减,又(1)0,q当01x时,(1)0qxq;当1x时,(1)0qxq;·····
···················8分所以,当01x时,0px;当1x时,0px;()px在(0,1)单调递增,在(1,)上单调递减,max()(1)1pxp,·······························
··············································9分当0x且0x时,px;当1x时,0px;·························1
0分若直线ya与函数()px的图象有交点,则1a,即1a,········································································11分要使函数()fx的图象与x轴没有公共点,则a的取值
范围为,1.··········12分解法二、(1)略,同解法一;(2)因为2()ln0fxaxxxx,所以2121()21axxfxaxxx.···································
··················5分①当0a时,()0fx,所以()fx在0,单调递增,且11()10,(e)1e0,eeff所以函数()fx有唯一的一个零点,这与()fx的图象与x轴没有公共点相矛盾,所以0a;··························
····6分②当0a时,()0fx,所以()fx在(0,)单调递增;(ⅰ)当1a时,22111111()lnln1eeeeeefaaaaaaa21110ee≤,又因为(1)10,fa所以函数()fx有唯一的一个零点,这与()fx的
图象与x轴没有公共点相矛盾,所以1a不成立;······················7分(ⅱ)当01a时,22()lnlnfxaxxxxxx,令2()ln.hxxxx21111()()10eeeefh,(1)10fa,所
以函数()fx有唯一的一个零点,高三数学参考答案及评分细则(第21页共21页)这与()fx的图象与x轴没有公共点相矛盾,所以01a不成立;·················8分(ⅲ)当0a时,方程2210axx有两根1x,2x,不妨设12xx,因为12121
0,210,2xxaxxa所以120xx,所以,当20xx时,()0fx;当2xx时,()0fx;所以()fx在2(0,)x上单调递增,在2(,)x上单调递减,所以()fx在2xx处取到唯一
的极大值,即函数()fx的最大值为2()fx,且222210.axx·····················································································
···9分222222222211()lnlnln.222xxfxaxxxxxx设1()ln22xuxx,则()ux在(0,)单调递增,且(1)0,u当(0,1)x时,()0ux;当(1,)x时,()0ux;
即2(0,1)x时,2()0fx;当2(1,)x时,2()0fx;由于221111()ln10eeeeeeaaf,所以2(1,)x时,()fx的图象与x轴有公共点,这与()fx的图象与x轴没有公共点相矛盾,所以2(1,)x;·····
····································································10分故2(0,1)x时,()fx的最大值2()fx小于0,又2222210(01),axxx即2222112(0
1)axxx,因为2222211111()224xxx,····················································11分所以22a,即1.a要使函数(
)fx的图象与x轴没有公共点,则a的取值范围为,1.··········12分