【文档说明】福州市2021-2022高一上学期数学期末质量检测试卷及答案.pdf,共(10)页,830.432 KB,由baby熊上传
转载请保留链接:https://www.ichengzhen.cn/view-84009.html
以下为本文档部分文字说明:
数学试题(第1页共4页)准考证号________________姓名____________________(在此卷上答题无效)福州市2021-2022年第一学期质量检查数学试题(完卷时间120分钟;满分150
分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案
标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin120=A.12−B.12C.32−D.322.设集合
2|340Axxx=−−,|3Bxx=,则AB=A.{|1}xx−B.{|4}xxC.{|41}xx−D.{|13}xx−3.命题“20,10xx−”的否定是A.20,10xx−B.20,10xx−C.20,10xx
−D.20,10xx−4.“四边形是菱形”是“四边形是平行四边形”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知函数2,0,()2,02.xxxfxx+=以下关于()fx的结论正确的是A.若()2fx=,
则0x=B.()fx的值域为(4)−,C.()fx在(,2)−上单调递增D.()2fx的解集为(0,1)数学试题(第2页共4页)6.已知函数()ln(1)xfxxx=+−,则()fx的大致图象为1-1Oxy1-1Oxy1-1Oxy1-1OxyA.B.C.D.7.设30.12a=,0.4
3b=,0.4log0.12c=,则a,b,c的大小关系为A.abcB.bacC.acbD.cab8.已知函数()3eeππ3()()()()()()fxxxxxxx+−−−+−+=+的零点为1x,2x(12xx),
则A.120xxB.123exx−C.21exx−D.12πxx+二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列函数是奇函数的是A.()sinfxx=B.3()fxxx=+C.ee
()2xxfx−+=D.()ln|1|fxx=+10.在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于直线yx=对称,则以下结论一定正确的是A.sincos=−B.cossin=C.cos()0−=D.sin()1+=11.
若,0xy,且21xy+=,则A.18xyB.22xy+C.1210xy+D.22142xy+12.边际函数是经济学中一个基本概念,在国防、医学、环保和经济管理等许多领域都有十分广泛的应用.函数()fx的边际函数()Mfx定义为()(1)()
Mfxfxfx=+−.某公司每月最多生产75台报警系统装置,生产x台(*xN)的收入函数2()300020Rxxx=−(单位:元),其成本函数()5004000Cxx=+(单位:元),利润是收入与成本之差.设利润函数为()Px,则以下说法正确的是A.()Px取得最大值时每月产
量为63台B.边际利润函数的表达式为()248040MPxx=−(*xN)C.利润函数()Px与边际利润函数()MPx不具有相同的最大值D.边际利润函数()MPx说明随着产量的增加,每台利润与前一台利润差额在减少数学试题(第
3页共4页)三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.lg4lg25+=_____________.14.要在半径60cmOA=的圆形金属板上截取一块扇形板,使其弧AB的长为50πcm,那么圆心角AOB=_____________.(用弧度表示)
15.函数()sin()fxx=+(π0,2)的部分图象如图所示,BCx轴,则=_____________,=_____________.(第一空2分,第二空3分)16.写出一个同时具有下列性质①②③的函数()fx=_____________.①()fx在R上单调递增;②1212
()()(0)()fxfxffxx=+;③(0)1f.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点34(,)55P.(1
)求cos(π)+的值;(2)若tan2=−,求tan()−的值.18.(12分)已知函数2()xafxx+=(aR),且(1)5f=.(1)求a的值;(2)判断()fx在区间(0,2)上的单调性,并用单调性的定义证明你的判断.1
9.(12分)已知函数2()3sin22cos2fxxx=++.(1)求()fx的最小正周期;(2)将()yfx=的图象上的各点_____________得到()ygx=的图象,当,64x−时,方程()gxm=有解,求实数m的取值范围.在以下①、②中选择一个,补在(2)中的
横线上,并加以解答,如果①、②都做,则按①给分.①向左平移6个单位,再保持纵坐标不变,横坐标缩短到原来的一半.②纵坐标保持不变,横坐标伸长到原来的2倍,再向右平移6个单位.xy2π3π2π3CBO数学试题(第4页共4页)20.(12
分)已知函数()fx是定义在R上的偶函数,当0x,()23xfx=+.(1)求()fx的解析式;(2)解不等式(2)2()fxfx.21.(12分)筒车是我国古代发明的一种水利灌溉工具,因其经济环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中描绘了筒车的工作原理.如图1是一
个半径为R(单位:米),有24个盛水筒的筒车,按逆时针方向匀速旋转,转一周需要120秒.为了研究某个盛水筒P离水面高度h(单位:米)与时间t(单位:秒)的变化关系,建立如图2所示的平面直角坐标系xOy.已知0t=时P的初始位置为点(2,23)A−(此时P装满水).(1)P从出发到开始倒水入槽
需要用时40秒,求此刻P距离水面的高度(结果精确到0.1);(2)记与P相邻的下一个盛水筒为Q.在筒车旋转一周的过程中,求P与Q距离水面高度差的最大值(结果精确到0.1).参考数据:21.41,31.73,πsin0.2
612,πsin0.1324.22.(12分)已知函数22()log2xgxx=+.(1)证明:(2)()2gxgx−+−=;(2)若存在一个平行四边形的四个顶点都在函数)(xf的图象上,则称函数)(xf具有性质P.判断函数()gx是否具有性质P,并证明你的结论;(3)设
点(4,0)A−,函数()()2gxhx=.设点B是曲线)(xhy=上任意一点,求线段AB长度的最小值.高一数学参考答案(第1页共6页)福州市2021—2022年第一学期质量检查数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考
生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。3.解答
右端所注分数,表示考生正确做到这一步应得的累加分数。4.只给整数分数。一、单项选择题:本题共8小题,每小题5分,共40分.1.D2.D3.C4.A5.B6.B7.A8.D二、多项选择题:本题共4小题,每小题5分,共20分.9.AB10.BD11.ABD12.
BCD三、填空题:本大题共4小题,每小题5分,共20分.13.214.5π615.2,π316.()32xfx=(答案不唯一,形如()xfxma=(1,1ma)均可)8.【解答】由于(3)(3e)(3π)0f−=++,(0)3e(3e)π0f=−−−,(e)(eπ)(e3)0f=−+
,(π)(π3)(πe)0f=+−,由零点存在定理得()fx在区间(3,0)−,(e,π)内存在零点,结合条件可得1(3,0)x−,2(e,π)x.由1(3,0)x−,2(e,π)x,显然120xx,A
选项错误;1(0,3)x−,2111(,)πex,则123(0,)exx−,123(,0)exx−,B选项错误;1(0,3)x−,2(e,π)x,则21(e,π3)xx−+,C选项错误;12(e3,π)xx+−,故D选项正确.选择D.高一数学参考答
案(第2页共6页)四、解答题:本大题共6小题,共70分.17.【命题意图】本小题考查三角函数定义、诱导公式、同角三角函数的基本关系、两角差的正切公式等基础知识;考查抽象概括能力、运算求解能力;考查化归与转化思想、函数与方程思想;考查数学抽象、
数学运算等核心素养;体现基础性.【解析】(1)由于角的终边过点34(,)55P,由三角函数的定义可得3cos5=,3分则3cos(π)cos5+=−=−.·························································
···········5分(2)由条件得4tan3=,······································································7分则4(2)tantan3tan()=281tantan
13−−−−==−+−.··············································10分18.【命题意图】本小题主要考查函数的概念、函数的单调性等基础知识;考查抽象概括能力、数据处理能力、运算求解能力
、推理论证能力;考查化归与转化思想、函数与方程思想、数形结合思想;考查数学运算、逻辑推理等核心素养;体现基础性和综合性.【解析】(1)由(1)5f=得15a+=,解得4a=.····································
·····3分(2)()fx在区间(0,2)内单调递减.························································4分证明:由(1)得244()xfxxxx+==+.对任意12,(0,2)x
x,且12xx,有2112121212121212124()()(4)44()()()xxxxxxfxfxxxxxxxxxxx−−−−=+−−=−+=,·······9分由12,(0,2)xx,得1204xx,1240xx
−.又由12xx,得120xx−,于是121212()(4)0xxxxxx−−,即12()()fxfx,···········································11分所以4(
)fxxx=+在区间(0,2)上单调递减.·················································12分19.【命题意图】本小题主要考查三角恒等变换、三角函数的图象与性质等基础知识;考查数据处理能力、运算求解能力;考查化归与转化思想、数形
结合思想、函数与方程思想等;考查直观想象、数学运算等核心素养;体现基础性和综合性.高一数学参考答案(第3页共6页)【解析】(1)因为2()3sin22cos23sin2cos23fxxxxx=++=++π2sin(2)
36x=++,············4分所以函数()fx的最小正周期2ππ2T==.····················································5分(2)若选择①
,由(1)知π()2sin(2)36fxx=++,那么将()fx图象上各点向左平移6个单位,再保持纵坐标不变,横坐标缩短到原来的一半,得到()2cos43gxx=+.··················9分当,64x−时,可得4,3
x−,cos4[1,1]x−,()[1,5]gx,············11分由方程()gxm=有解,可得实数m的取值范围为[1,5].······························12分若选择②,由(1)知π()2sin(2)36fxx=++
,那么将()fx图象上各点纵坐标保持不变,横坐标伸长到原来的2倍,再向右平移6个单位.得()2sin3gxx=+.·······················9分当,64x−时,12sin[,]22x−
,()[2,32]gx+,·····························11分由方程()gxm=有解,可得实数m的取值范围为[2,32]+.·······················12分20.【命题意图】本小题主要考查函数奇偶性、解一元二次不等式等基础知识;考查逻辑推理能力、
运算求解能力;考查化归与转化思想;考查数学抽象、数学运算等核心素养;体现基础性和综合性.【解析】(1)当0x时,0x−,···········································
···············1分因为函数()fx是定义在R上的偶函数,则()()23xfxfx−=−=+.···················4分所以|()23xfx=+∣.····································
············································5分(2)由(1)得|()23xfx=+∣,所以不等式(2)2()fxfx|2|||232(23)xx++,即|2|||22230xx−−,
·······················7分高一数学参考答案(第4页共6页)令2xt=,则[1,+)t,于是2230tt−−,解得3t,所以2log3x,······9分得2log3x或2log3x−,···································
·······························11分从而不等式(2)2()fxfx的解集为22(,log3][log3,)−−+.····················12分21.【命题意图】本小题主要考查
三角恒等变换、三角函数的应用;考查运算求解能力、逻辑推理能力;考查化归与转化思想、数形结合思想;考查数学抽象、直观想象、逻辑推理、数学运算、数据分析等核心素养;体现基础性、综合性、创新性与应用性.【解析】解法一:(1)由于
筒车转一周需要120秒,所以P从出发到开始倒水入槽的40秒,线段OA按逆时针方向旋转了402π2π1203=,····································1分因为A点坐标为(2,23)−,得222(23)4R=+=,以OA为终边的角为π3−,·2
分所以P距离水面的高度2ππ4sin()23436.9m33=−+=.···························4分(2)由于筒车转一周需要120秒,可知P转动的角速度为πrads60,又以OA为终
边的角为π3−,则P开始转动t秒后距离水面的高度1ππ4sin()23603ht=−+,0120t.························7分如图,P,Q两个盛水筒分别用点B,C表示,则2ππ2412BOC==,点C相对于点B始终落后πrad12,此时Q距离水面的高
度2π5π4sin()236012ht=−+.···················8分则P、Q距离水面的高度差12πππ5πππ5ππ||4sin()sin()4sin()sin()60360126031260Hhhtttt=−=−−−=−+−,0120t.····
···················································································10分利用sinsin2sincos22+−+=,可得ππ3π8sincos()24
608Ht=−.当π3π0608t−=或π3ππ608t−=,即22.5t=或82.5t=时,H最大值为π8sin1.024.所以,筒车旋转一周的过程中,P与Q距离水面高度差的最大值约为1.0m.xBAOyC高一数学参考答案(第5页共6页)····
···································································································12分解法二:(1)当0t=时,P位于点(2,23)A−,以OA为终边的角为π3−;根据
筒车转一周需要120秒,可知P转动的角速度为πrads60,依题意可得P开始转动t秒后距离水面的高度ππ4sin()23603ht=−+,0120t.··································3分当40t=,得ππ4sin(40)23436.9m603h=−+=.
··································4分(2)由(1)知,P开始旋转t秒后距离水面的高度1ππ4sin()23603ht=−+.····5分如图,P,Q两个盛水筒分别用点B,C表示,则2ππ2412BOC==,点C相
对于点B始终落后πrad12,此时Q距离水面的高度2πππ4sin()2360312ht=−−+.·········6分令ππ603t=−,则P、Q距离水面的高度差12π||4sinsin()12Hhh=−=−−ππ4sinsincoscossin121
2=−+ππ4(1cos)sinsincos1212=−+22ππ4(1cos)sinsin()1212=−++(其中11π24=)····································9分当π2+=或3π2+=时,π2
4=或25π24=时,即22.5t=或82.5t=时,H最大值为22ππ4(1cos)sin1212−+2ππ422cos44sin1224=−=π8sin1.024=.所以,筒车旋转一周的过程中,P与Q
距离水面高度差的最大值约为1.0m.······························································································
·········12分22.【命题意图】本小题主要考查对数的运算、函数最值问题的求解;考查运算求解能力、逻辑推理能力;考查化归与转化思想、数形结合思想;考查数学抽象、直观想象、逻辑推理等核心素养;体现基础性、综合性、应用性和创新性.【解析】xBAOyC高一数学参考答案(
第6页共6页)(1)222(2)2(2)()loglog2xxgxgxxx−−−+−=+−,·······································1分22(2)2log2xxxx−−=−··············
·····················2分2log42==··················································3分(2)由(1)知,()gx的图象关于点(1,1)
M−中心对称,····························4分取函数()gx图象上两点(2,0)C,(4,2)D−,显然线段CD的中点恰为点M;·································
·····························5分再取函数()gx图象上两点2(,1)3E−,8(,3)3F−,显然线段EF的中点也恰为点M.·····························································6分因此四
边形CEDF的对角线互相平分,所以四边形CEDF为平行四边形,·······7分所以函数()gx具有性质P.·································································
·····8分(注:若考生能构造出其他符合题意的平行四边形,同样给分.)(3)()2()22gxxhxx==+,设0002(,)2xBxx+(02x−或00x),则2222222000000002244(4)()(4)(2)222xxABxxxxxx=++=++
=++−+++,·······9分2002001616(2)4(2)44(2)2xxxx=+++++−+++,记02xt+=(0t或2t),则222216164448()4()16ABtttttttt=++−+=−+−+,·······························
·······································································10分记4tut−=,则222416(2)12ABuuu=++=++,所以,当2u=−,即035x=−−时,·······
··············································11分min23AB=.·········································································
···········12分