【文档说明】湖南省益阳市桃江县2019-2020高二下学期期末考试数学试题(及答案).doc,共(12)页,1.206 MB,由baby熊上传
转载请保留链接:https://www.ichengzhen.cn/view-83956.html
以下为本文档部分文字说明:
2019—2020学年度第二学期期末考试高二数学试题卷(时量:120分钟,满分:150分)一、单项选择题:本题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已
知集合{14}Axx≤≤,2{*|23}BxNxx≤,则AB=A.{13}xx≤≤B.{03}xx≤≤C.{1,2,3}D.{0,1,2,3}2.“2x”是“lglg2x”的条件A.充分不必要B.必要不充分C.充要D.既不充分又不必要3.已知双曲线221
3xym的离心率为3,则该双曲线的虚轴长为A.4B.26C.23D.24.已知2lg2,ln3,log3xyz,则A.xzyB.zyxC.xyzD.zxy5.函数2sin2xyx的图象可能是6.两个不同的小球要放到编号分别为1,2,3,4,5,6的盒子中,
每个盒子中最多放入一个小球,则放入小球的盒子的编号不连续的概率为A.23B.14C.13D.347.已知函数()fx是定义在R上的奇函数,当[0,)x时,2()2fxxx,若实数m满足2(log)3fm≤
,则m的取值范围是A.(0,2]B.1,22C.(0,8]D.1,888.已知数列{an}是等比数列,Sn为其前n项和,若a1+a2+a3=4,a4+a5+a6=8,则S12等于A.40B.60C.32
D.509.已知菱形ABCD边长为4,60DAB,M为CD的中点,N为平面ABCD内一点,且满足AN=NM,则AMAN的值为A.27B.16C.14D.810.若将函数()sin2fxx的图像向右平移116个单位长度得到函数()gx的图像,下列说法中正确的
是A.()gx的图像关于直线12x对称B.()[0,]gx在上恰有两个零点C.5()(,)36gx在区间上单调递减D.()[,0]2gx在上的值域为3[,0]2二、多项选择题:本题共2小题,每小题5
分,共10分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。11.设公差不为0的等差数列{}na的前n项和为nS,若1718SS,则下列各式的值为0的是A.17aB.35SC.1719aaD.1916
SS12.已知椭圆C:22221(0)xyabab的左,右焦点分别为1F,2F,且122FF,点(1,1)P在椭圆内部,点Q在椭圆上,则以下说法正确的是A.1QFQP的最小值为21aB.椭圆C的短轴长可能为2C.椭圆C的离心率的取值范围
为31(0,)2D.若11PFFQ,则椭圆C的长轴长为5+17三、填空题:本题共4小题,每小题5分,共20分;其中第16小题,第一空2分,第二空3分。13.已知平面向量(1,2),(4,)abm,若ab,则b.14.已知1t,则41tt的最小值为.1
5.在正方体1111ABCDABCD中,E为1BB的中点,则异面直线1AE与1AC所成角的余弦值为.16.已知抛物线C:28yx的焦点为F,准线为l,点P为准线l上一点,且不在x轴上,直线PF交抛物线C于A,B两点,且3PAAF,则AB;设坐标原
点为O,则AOB△的面积为.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)已知函数()log(1)(01)xafxaaa且.(1)求()fx的定义域;(2)解关于x的不等式()(1)
fxf.18.(本小题满分12分)已知ABC△的内角,,ABC的对边分别为,,abc,且sin()sin()aACBbBC.(1)求角B的大小;(2)已知26ac,且ac,若ABC△的面积为3,求b边的长以及ABC△外接圆的半径R.19.(本小题满分12分)一饮料店制作了一款新饮
料,为了进行合理定价先进行试销售,其单价x(元)与销量y(杯)的相关数据如下表:单价x(元)8.599.51010.5销量y(杯)120110907060(1)已知单价x与销量y具有线性相关关系,求y关于x的
线性回归方程;(2)若该款饮料每杯的成本为8元,试销售结束后,请利用(1)所求得的线性回归方程确定单价定为多少元时(单价保留到整数),销售利润最大?并求出利润的最大值.参考公式:线性回归方程ybxa的最小二乘法计算公式:1221,niiiniixynxybaybxxnx
,参考数据:552114195,453.75iiiiixyx20.(本小题满分12分)如图,直三棱柱111ABCABC中,90ACB,112ACBCAA,D,E分别是棱1CC,1BB的中点.(1)证明:1BD平面11ACE;(2)求二面角11BADA的余
弦值.21.(本小题满分12分)已知等比数列{}na的前n项和为nS,637SS,且23,1,aa成等差数列.(1)求数列{}na的通项公式;(2)设1nnba,求数列nb的前2n项的和2nT.
22.(本小题满分12分)已知椭圆1:2222byaxC)0(ba的离心率为36,且经过点)23,23(A.(1)求椭圆C的方程;(2)若不过坐标原点的直线l与椭圆C相交于M、N两点,且满足OMONOA
,求MON面积取最大值时直线l的方程.2019—2020学年度第二学期期末考试高二数学参考答案一、单项选择题:本题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C2.B3.B4.C5.D6.A7.
A8.B9.C10.B二、多项选择题:本题共2小题,每小题5分,共10分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。11.BD12.AD三、填空题:本题共4小题,
每小题5分,共20分;其中第16小题,第一空2分,第二空3分。13.2514.515.151516.9;62四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(本小题满分10分)【解析】(1)定义域为1xa的解集∴当1a时,定义域为(0,)·····
·····························································3分当01a时,定义域为(,0)·································································5分(
2)∵1x在定义域内,∴1a∴()fx单调递增,结合定义域可知:()(1)fxf的解集为(0,1)····························································10分注:直接给出函数f(x)单调性的给全分.18.(本小题满分12
分)【解析】(1)由正弦定理以及sin()sin()aACBbBC得:sinsin(2)sinsin()ABBA·········································
·········2分∴sinsin2sinsinABBA,又sinA,∴2sincossinBBB,又sinB,∴1cos,602BB····································
·······························6分(2)13sin324ABCSacBac△,∴4ac由26ac,联立可得22ac或14ac∵ac,∴1,4ac·······································
·························8分根据余弦定理:2222cos116413bacacB∴13b································································
·················10分由2sinbRB,即113392332R综上:b边的长为13,ABC△外接圆的半径R等于393·················12分19.(本小题满分12分)【解析】(1)由表中数据可计算得1(8.599.510
10.5)9.5,5x1(120110907060)905y12221419559.59032453.7559.5niiiniixynxybxnx90329.5394aybx∴y关于x的线性回归方程为3239
4yx(2)设定价为x元,则利润函数为(32394)(8)yxx,其中8x≥2326503152yxx当650102(32)x≈时,y有最大值为148.所以单价定为10元时,销售
利润最大,最大利润为148元.20.(本小题满分12分)【解析】(1)由题意知,11AC平面11BCCB,平面11BCCB,111ACBD.················································
···········2分又112ACBCAA,D,E分别是棱1CC,1BB的中点,11CEBD.··························································································3分又
11AC平面11ACE,1CE平面11ACE,,1BD平面11ACE.·················································································5分
(2)不妨设1112ACBCAA,如图,以C为原点,CA,CB,1CC所在直线分别为x,y,z轴,建立空间直角坐标系,则0,0,1D,11,0,2A,10,1,2B,)1,1,0(1DB,)0,1,1(11BA.···························
········································6分设平面11ADB的法向量为),,(zyxn,则00111zyDBnyxBAn令1y,得1x,
1z,)1,1,1(n.··························································································8分因为y轴垂直平面1AAD,所以可取平面1A
AD的法向量为)0,1,0(m,·············9分3313010)1,1,1(,cosnm.又二面角11BADA显然为钝角所以二面角11BADA的余弦值为33.·····································
···············12分【注】二面角的余弦值缺少负号扣2分21.(本小题满分12分)【解析】(1)设等比数列{}na的公比为q,由637SS得333(1)7qSS30S,∴317
q,∴2q····················································2分由23,1,aa成等差数列得232aa,即11242aa,∴11a·········3分数列{}na的通项公式为1(
2)nna·················································6分(2)当n为偶数时,11(2)10nna,当n为奇数时,11(2)10nna≥···7分∴2123421
2(1)(1)(1)(1)(1)(1)nnnTaaaaaa1234212nnaaaaaa···················································9分22321212122222112nnn
.·····································12分22.(本小题满分12分)【解析】(1)∵36e,∴2232ac,2221cb,设椭圆C的方程为22222213xy
cc,将点A的坐标代入得:1232122cc,∴22c.故椭圆C的方程为1322yx···········5分(2)依题意可知,直线MN的斜率存在,设其方程为mkxy)0(m,),(21yxM,),(22yxN由mkxyyx1322得0336)13(2
22mkmxxk,0)13(12)33)(13(436222222mkmkmk,1322km,136221kkmxx,13332221kmxx,·········
···············································6分1322)(22121kmmxxkyy,OMONOA23
13223136221221kmyykkmxx,31k,···························7分则342m,即:332332m且0m,21221214)(||21||||21xxxxmxxmSMON13
)13(12||21222kmkm434||32mm)34(34322mm······················8分2233433422mm≤,··············
······················································10分当且仅当22343mm,即36m时,等号成立.直线MN的方程为3631xy.··········································
···················12分【注】本题求出了直线方程而未求出最大值扣2分