人教A版高中数学选择性必修二《5.3.1函数的单调性(第2课时)》教案

DOC
  • 阅读 36 次
  • 下载 0 次
  • 页数 8 页
  • 大小 220.521 KB
  • 2022-12-02 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【baby熊】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
人教A版高中数学选择性必修二《5.3.1函数的单调性(第2课时)》教案
可在后台配置第一页与第二页中间广告代码
人教A版高中数学选择性必修二《5.3.1函数的单调性(第2课时)》教案
可在后台配置第二页与第三页中间广告代码
人教A版高中数学选择性必修二《5.3.1函数的单调性(第2课时)》教案
可在后台配置第三页与第四页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的5 已有0人下载 下载文档3.00 元
/ 8
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】人教A版高中数学选择性必修二《5.3.1函数的单调性(第2课时)》教案.docx,共(8)页,220.521 KB,由baby熊上传

转载请保留链接:https://www.ichengzhen.cn/view-83859.html

以下为本文档部分文字说明:

5.3.1函数的单调性(2)本节课选自《2019人教A版高中数学选择性必修二》第四章《数列》,本节课主要学习函数的单调性学生已经具有导数概念、导数几何意义、导数计算、函数的单调性等相关的数学概念知识,对函数的单调性有一定的认识,对相应导数的内容也具有一定的储备。函数的单调性是函数性质中的一个重要

性质,学生在必修一中已经学习了函数单调性的内容,如利用函数图像、单调性定义来研究函数的单调性,在学习导数的基础上利用导数相关知识研究函数单调性是导数的一个重要应用,也为下一节学习函数的极值打下基础,因此,本节内容具有承上启下的作用。课程目

标学科素养A.掌握利用导数判断函数的单调性的一般步骤.B.探究函数增减的快慢与导数的关系.C.学会处理含参函数的单调性问题1.数学抽象:导数与函数单调性的关系2.逻辑推理:运用导数正负判断函数单调性3.数学运算:函数单调区间的求解4

.直观想象:函数增减的快慢与导数的关系重点:导数判断函数的单调性的一般步骤难点:含参函数的单调性问题多媒体教学过程教学设计意图核心素养目标一、温故知新1.函数f(x)的单调性与导函数f′(x)正负的关系定义在区间(a,b)内的函数y=f(x):f′(x)的正负

f(x)的单调性f′(x)>0单调递____f′(x)<0单调递____增;减2.判断函数y=f(x)的单调性第1步:确定函数的______;第2步:求出导数f′(x)的____;第3步:用f′(x)的____将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的____,由此得出函数

y=f(x)在定义域内的单调性.定义域;零点;零点;正负探究1.形如f(x)=ax3+bx2+cx+d(a≠0)的函数应用广泛,下面我们利用导数来研究这类函数的单调性。例3.求函数()的单调区间.解:函数()的定义域为R

,对f(x)求导,得()()()令()0,解得:和把函数定义域划分成三个区间,()在各区间上的正负,以及()的单调性如表所示。温故知新,提出问题,,引导学生探究运用导数研究函数的单调性。发展学生数学抽象、直观想象、数学运算、数学建模的核心素养。所以,f(x)在在(

)和()上单调递增,在()上单调递减。如图所示如果不用导数的方法,直接运用单调性的定义,你如何求解本题?用解不等式法求单调区间的步骤1确定函数fx的定义域;2求导函数f′x;3解不等式f′x>0或f′x<0,并写出解集;4根据3的结果确定函数fx的单调区间.跟踪训

练1.求下列函数的单调区间:(1)f(x)=3x2-2lnx;(2)f(x)=x2e-x.[解](1)f(x)=3x2-2lnx的定义域为(0,+∞),f′(x)=6x-2x=23x2-1x=错误!,由x>0,f′

(x)>0,解得x>33.由x>0,f′(x)<0,解得0<x<33.∴函数f(x)=3x2-2lnx的单调递增区间为33,+∞,单调递减区间为0,33.(2)函数的定义域为D=(-∞,+∞).∵f

′(x)=(x2)′e-x+x2(e-x)′=2xe-x-x2e-x=e-x(2x-x2),令f′(x)=0,由于e-x>0,∴x1=0,x2=2,用x1,x2分割定义域D,得下表:x(-∞,0)0(0,2)2(2,+∞)f′(x)-0+0-f(x)↘f(0

)=0↗f(2)=4e2↘∴f(x)的单调递减区间为(-∞,0)和(2,+∞),单调递增区间为(0,2).探究2:研究对数函数与幂函数在区间()上增长快慢的情况分析:研究对数函数的导数为(()),所以在区间()上单调递增。

当越来越大时,越来越小,所以函数递增得越来越慢,图像上升得越来越平缓分析:幂函数的导数为(()),所以在区间()上单调递增。当越来越大时,越来越大,所以函数递增得越来越快,图像上升得越来越陡峭通过特例,体会函数增长快慢与导数之

间的关系,发展学生直观想象、数学抽象、数学运算和数学建模的核心素养。判断()()的图像与之间的对应关系。函数图象的变化趋势与导数值大小的关系一般地,设函数y=f(x),在区间(a,b)上:导数的绝对值函数值变化函数的图象越大__

比较“____”(向上或向下)越小__比较“____”(向上或向下)快;陡峭;慢;平缓例4.设()()两个函数的图像如图所示。解:因为()()所以(),(),当x=1时,()()当0<x<1时,()()当x>1时,()()所以,f(x),g(x)在()上都是增函数。在区间

(0,1)上,g(x)的函数图象比f(x)的图像要“陡峭”;在区间()上,g(x)的图象比f(x)的图象要“平缓”。所以,f(x),g(x)的图象依次是图中的C2,C1。通过典型例题的分析和解决,帮助学生体会含参函数的求导问题,

发展学生数学运算,直观想象和数学抽象的核心素养。例5.设g(x)=lnx-ax2+(a-2)x,a<0,试讨论函数g(x)的单调性.[思路探究]先对原函数求导得g′(x)=-ax+12x-1x(x>0),再对a分类讨论得函数g(x)的单调性.(1)当a<-2时,∵

-1a<12,∴g′(x)=-ax+1a2x-1x>0等价于x+1a(2x-1)>0,易得函数g(x)在0,-1a和12,+∞上单调递增,同理可得在-1a,12上单调递减;(2)当a=-2时,g′

(x)=2x-12x≥0恒成立,∴函数g(x)在(0,+∞)上单调递增;(3)当-2<a<0时,∵-1a>12,∴g′(x)=-ax+1a2x-1x>0等价于x+1a(2x-1)>0,易得函数g(x)在0,12和-1a,+∞上单调递增,同理可得在12,-1a

上单调递减.利用导数研究含参函数fx的单调区间的一般步骤1确定函数fx的定义域;2求导数f′x;3分析参数对区间端点、最高次项的系数的影响,以及不等式解集的端点与定义域的关系,恰当确定参数的不同范围,并进行分类讨论;4在不同的参数范围内,解不等式f′x>0和f′

x<0,确定函数fx的单调区间.跟踪训练2.试求函数f(x)=kx-lnx的单调区间.[解]函数f(x)=kx-lnx的定义域为(0,+∞),f′(x)=k-1x=kx-1x.当k≤0时,kx-1<0,∴f′(x)<0,则f(x)在(0,+∞)上单调递减.当k>0时,由f′(x)<0,得kx-1

x<0,解得0<x<1k;由f′(x)>0,得kx-1x>0,解得x>1k.∴当k>0时,f(x)的单调递减区间为0,1k,单调递增区间为1k,+∞.综上所述,当k≤0时,f(x)的单调递减区间为(0,+∞);当k>0时,f(x)的单

调递减区间为0,1k,单调递增区间为1k,+∞.三、达标检测1.求函数f(x)=exx-2的单调区间.解:函数f(x)的定义域为(-∞,2)∪(2,+∞).f′(x)=exx-2-exx-22=exx-3x-22.因为x∈(-∞,2)∪(2,+∞),所以ex>0,(x-2)

2>0.由f′(x)>0得x>3,所以函数f(x)的单调递增区间为(3,+∞);由f′(x)<0得x<3,又定义域为(-∞,2)∪(2,+∞),所以函数f(x)的单调递减区间为(-∞,2)和(2,3).2.已知函数f(x)=x3-

ax-1为单调递增函数,求实数a的取值范围.[解]由已知得f′(x)=3x2-a,因为f(x)在(-∞,+∞)上是单调增函数,所以f′(x)=3x2-a≥0在(-∞,+∞)上恒成立,即a≤3x2对x∈R恒成立,因为3x2≥0,所以只需a≤0.又因为a=0时,f′(x)=

3x2≥0,f(x)=x3-1在R上是增函数,所以a≤0.3.已知函数f(x)=ae2x+(a-2)ex-x,讨论f(x)的单调性.[解]f(x)的定义域为(-∞,+∞),f′(x)=2ae2x+(a-2)ex-1

=(aex-1)(2ex+1).①若a≤0,则f′(x)<0,所以f(x)在(-∞,+∞)上单调递减.②若a>0,则由f′(x)=0,得x=-lna.当x∈(-∞,-lna)时,f′(x)<0;当x∈(-lna,+∞)时,

f′(x)>0.所以f(x)在(-∞,-lna)上单调递减,在(-lna,+∞)上单调递增.综上,当a≤0时,f(x)在(-∞,+∞)上单调递减;当a>0时,f(x)在(-∞,-lna)上单调递减,在(-lna,+∞)上单调递增.通过练习巩固本节所学知识,通

过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。四、小结通过总结,让学生从具体问题出发,引导学生探究运用导数研究函数单调性的方法和原理,并通过思考、讨论、练习进一步提升学生运用导数判断函数单调性的方法,发展学生的直观想

象、数学运算、逻辑推理等核心素养。1.判断或证明函数的单调性,首先确定函数的定义域,然后求得函数的导数,根据导数的正负得到不等式的解集,从而确定函数的单调性.2.利用导数研究含参数函数的单调性时,常遇到三种情况:(1)区间端点大小不

确定型由于函数导数不等式中的区间端点大小不定,因此需根据区间端点的大小确定参数的范围,再分类讨论函数的单调区间.(2)区间端点与定义域关系不确定型此类问题一般会有定义域限制,解函数导数不等式的区间端点含参数,此端点与函数定义域的端点大小不确定,因此需分类讨论.五、课时练进一步

巩固本节所学内容,提高概括能力。

baby熊
baby熊
深耕教育类文档。
  • 文档 5820
  • 被下载 238
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?