上海市杨浦区同济大学实验学校2020-2021七年级初一上学期数学期中试卷+答案

PDF
  • 阅读 66 次
  • 下载 0 次
  • 页数 16 页
  • 大小 421.131 KB
  • 2022-12-02 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【baby熊】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
上海市杨浦区同济大学实验学校2020-2021七年级初一上学期数学期中试卷+答案
可在后台配置第一页与第二页中间广告代码
上海市杨浦区同济大学实验学校2020-2021七年级初一上学期数学期中试卷+答案
可在后台配置第二页与第三页中间广告代码
上海市杨浦区同济大学实验学校2020-2021七年级初一上学期数学期中试卷+答案
可在后台配置第三页与第四页中间广告代码
上海市杨浦区同济大学实验学校2020-2021七年级初一上学期数学期中试卷+答案
上海市杨浦区同济大学实验学校2020-2021七年级初一上学期数学期中试卷+答案
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 16
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】上海市杨浦区同济大学实验学校2020-2021七年级初一上学期数学期中试卷+答案.pdf,共(16)页,421.131 KB,由baby熊上传

转载请保留链接:https://www.ichengzhen.cn/view-83332.html

以下为本文档部分文字说明:

2020-2021学年上海市杨浦区同济大学实验学校七年级(上)期中数学试卷一、填空题(本大题共14题,每题3分,满分42分)1.如果分式﹣323y的值为负数,则y的取值范围是_____.【答案】y>1.5.【解析】【分析

】根据题意得出2y﹣3>0,进而进行计算解答即可.【详解】解:根据题意可得:2y﹣3>0,解得:y>1.5,故答案为:y>1.5.【点睛】本题考查分式的值的正负性和解一元一次不等式的知识点,正确解不等式是解题的关键.2.已知1

纳米=10﹣9米,一根头发的半径约为0.025毫米,用科学记数法表示一根头发的半径约为_____纳米.【答案】2.5×104.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较

大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:∵0.025毫米=0.000025米,∴一根头发的半径约为:0.000025÷10﹣9=2.

5×104纳米,故答案为:2.5×104.【点睛】本题考查用科学记数法表示较小的数,掌握科学记数法的基本形式并准确判断a与n的值是解题的关键.3.若方程2111xmxx有一个增根,则m=_____.【答案】2.【解析】【分析】分

式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值.【详解】解:去分母得:x+2=m+1,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m+1=3,解得:m=

2,故答案为:2【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.4.已知:a+a﹣1=3,则(a﹣a﹣1)3=_____.【

答案】55.【解析】【分析】先由13aa,即13aa求出15aa,再分别代入计算即可.【详解】解:∵a+a﹣1=3,即13aa,∴a2+2+21a=9,则a2﹣2+21a=5,即(a﹣1a)2=5,∴a﹣1a=5,当a﹣1a=5时,原式=(5)3=55;当a

﹣1a=﹣5时,原式=(﹣5)3=﹣55;综上,(a﹣a﹣1)3=55,故答案为:55.【点睛】本题主要考查分式的混合运算,解题的关键是掌握完全平方公式和分式的混合运算法则、负整数指数幂等知识.5.当k=_____时,方程223111kxxx会

产生增根.【答案】6或﹣4.【解析】【分析】由题意根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,进而把增根代入化为整式方程的方程即可求出k的值.【详解】解:分式方程去分母得:2(x﹣1)+3(x+1)=k,由分式方程有增根,得到x=1或x=

﹣1,把x=1代入整式方程得:k=6;把x=﹣1代入整式方程得:k=﹣4,综上,k的值为6或﹣4时,方程223111kxxx会产生增根,故答案为:6或﹣4.【点睛】本题考查分式方程的增根,注意掌握增根确定后可按如下步骤进行:①化分式方程为整式方程

;②把增根代入整式方程即可求得相关字母的值.6.已知当x=-2时,分式xbxa无意义,x=4时,此分式的值为0,则a+b=_____.【答案】2【解析】【分析】要注意分母的值一定不能为0,分母的值是0时分式没有意义.【详解】由分母x−a=−2−a=0则a=−2.由分子x−b=0

得4−b=0,解得:b=4.所以a+b=−2+4=2.故答案为2.【点睛】分式分母的值为0时分式没有意义,要使分式的值为0,必须分式分子的值为0并且分母的值不为0.7.如果a的平方根是3,则a_________【答案】81【解析】【分析】根据平方根的定义

即可求解.【详解】∵9的平方根为3,∴a=9,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.8.在数轴上和3的距离是3的点是_____.【答案】3+3或3﹣3.【解析】【分析】根据此点可

能在3的左边,也有可能在3的右边,据此可得答案.【详解】解:在数轴上和3的距离是3的点是3+3或3﹣3,故答案为:3+3或3-3.【点睛】此题考查数轴上两点之间的距离:用右边点所表示的数减去左边点所表示的数等于两点之间的距离.9.计

算0.0144=_____;310227=_____;2x=_____.【答案】(1).0.12(2).43(3).0【解析】【分析】直接利用二次根式的性质化简0.0144,利用立方根的性质化简310227,再由20x,且20x,从而可得:20x,从而可得出答案.【

详解】解:20.0144=0.12=0.12;3310644227273;∵二次根式有意义则2x≥0,且x2≥0,∴2x=0,∴200x.故答案为:0.12;43;0.【点睛】本题考查的是二次根式的性质,二次根式的

化简,掌握以上知识是解题的关键.10.若x<2,化简22)x(+|3﹣x|的正确结果是__.【答案】5-2x【解析】【分析】本题首先根据题意得出x-20,3-x0,然后根据绝对值的性质进行化简,从而得出答案.【详解】解:22)x(+|3﹣

x|=2x+|3﹣x|∵x<2∴x-20,3-x0∴原式=2-x+3-x=5-2x故答案为:5-2x【点睛】本题主要考查的就是二次根式的化简.在解决这个问题的时候我们一定要知道2a和2a的区别,第一个a的取值范围

为全体实数,第二个a的取值范围为非负数,第一个的运算结果为a,然后根据a的正负性进行去绝对值,第二个的运算结果就是a.本题我们知道原式=x2+3x,然后根据x的取值范围进行化简.11.连接直线外一点与直线上各点的所有线段中,__________最短

.【答案】垂线段【解析】试题解析:连接直线外一点与直线上各点的所有线段中,垂线段最短.故答案为垂线段.12.如图,∠1与∠2是直线_____和_____被直线_____所截的一对_____角.【答案】(1).a(

2).b(3).c(4).内错【解析】【分析】根据∠1与∠2的位置先找出两条直线a、b与截线c,再判断两角的位置关系即可.【详解】解:∠1与∠2是直线a和b被直线c所截的一对内错角.故答案为:a;b;c;内错.

【点睛】本题考查了内错角,能从图中先确定两直线,找出截线,再确定角的位置关系是解题的关键.13.如图,共有_____对同位角,有_____对内错角,有_____对同旁内角.【答案】(1).20(2).12(3).12

【解析】【分析】利用同位角、内错角、同旁内角定义进行解答即可.【详解】解:同位角:∠AEO和∠CGE,∠OEF和∠EGH,∠OFB和∠OHD,∠OFE和∠OHG,∠IGH和∠IEF,∠AEI和∠CGI,∠AFJ和∠CHJ,∠DHJ和∠JFB,∠AEO和∠AF

O,∠OEB和∠OFB,∠AEG和∠AFH,∠GEB和∠HFB,∠EGH和∠OHD,∠OGC和∠OHC,∠O与∠EFH,∠O与∠GEF,∠O和∠IGH,∠O和∠GHJ,∠CGI和∠CHJ,∠HGI和∠DHJ,共

20对;内错角:∠O和∠OEA,∠O和∠OFB,∠O和∠OGC,∠O和∠OHD,∠AEG和∠EGH,∠BEG和∠EGC,∠BFH和∠FHC,∠AFH和∠FHD,∠OEF和∠EFH,∠GEF和∠OFE,∠OGH和∠GHJ,∠OHG和∠IGH,共12对;同旁内角

:∠OEF和∠O,∠OFE和∠O,∠O和∠OGH,∠O和∠OHC,∠OEF和∠OFE,∠OGH和∠OHG,∠GEF和∠EFH,∠IGH和∠GHJ,∠AEG和∠CGE,∠BFH和∠FHD,∠FEG和∠EGH,∠EFH和∠GHF,共12对,故答案为:20;12;12.【点睛】此题主要考查了

同位角、内错角、同旁内角,关键是掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.14.如图所示,AB∥CD,那么∠1+∠2+∠3+∠4=_______.【答案】540°【解析】【分析】【详解】试题分析:连接AC,根据四边形的内角和为360°,两直线平行,同

旁内角互补,即得结果.如图,连接AC,则∠DAC+∠2+∠3+∠ACE=360°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠DAC+∠BAC+∠2+∠3+∠ACE+∠ACD=540°,即∠1+∠2+∠3+∠4=540°.考点:本题考查的是四边形的内角和定理,平行线的性质点评:解答本题的

关键是熟练掌握四边形的内角和为360°,两直线平行,同旁内角互补.二、选择题(本大题共5题,每题3分,满分15分)15.已知分式224xyxy,当x、y的值同时扩大4倍时,分式的值()A.不变B.扩大4倍C

.扩大16倍D.扩大5倍【答案】B【解析】【分析】依题意分别用4x和4y去代换原分式中的x和y,利用分式的基本性质化简即可.【详解】解:分别用4x和4y去代换原分式中的x和y,得224xyxy=22166444xyxy=2216(4

)4()xyxy=4×224xyxy,可见新分式是原分式的4倍.故选:B.【点睛】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.

16.在下列各数:0.51525354…、49100、0.2、1、7、13111、327中,无理数的个数是()A.2B.3C.4D.5【答案】B【解析】【分析】根据无理数的概念结合有理数的概念逐一进行判断即可.【详解】0.51525354…,无理数;49710010,

有理数;0.2,有理数;1,无理数;7,无理数;13111,有理数;327=3,有理数,所以无理数有3个,故选B.【点睛】本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习

的无理数有三类:①π类,如2π,3π等;②开方开不尽的数,如2,35等;③虽有规律但是无限不循环的数,如0.1010010001…,等.17.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共

用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.4848944xxB.4848944xxC.48x+4=9D.9696944xx【答案】A

【解析】【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:4

84x,逆流航行时间为:484x,∴可得出方程:4848944xx,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.18.在正数范围内定义一种运算☆,其规则为a☆b=11ab,根据这个

规则x☆(x+1)=32的解为()A.x=23B.x=1C.x=﹣23或1D.x=23或﹣1【答案】B【解析】【分析】关键根据题中已知条件找出规则,代入要求的式子求解.【详解】解:∵a☆b=11ab,x☆(x+1)=32.∴111xx=32.

∴21312xxx.即3x2﹣x﹣2=0.(x﹣1)(3x+2)=0.∴x﹣1=0或3x+2=0.∴x=1或x=﹣23(不合题意,舍去).故选:B.【点睛】此题属于运算的定义,根据特殊定义按照运算顺序计算,考

查学生对定义的理解运用能力.19.如图,已知直线a、b、c,若∠1=∠2=60°,且∠2=∠3,则图中平行线组数为()A.0B.1C.2D.3【答案】D【解析】【分析】根据∠1=∠2,得到a∥b,根据∠2=∠3,证得b∥c,进而证明a∥c,问题得解.【详解】解:∵∠1=∠2=60

°,∴a∥b,∵∠2=∠3,∴b∥c,∴a∥c,故选:D.【点睛】本题考查了平行线的判定,熟知平行线的判定定理是解题关键.三、解答题(本大题共5题,每题5分,满分25分)20.计算:22221244xyxy

xyxxyy【答案】yxy【解析】试题分析:先进行分式的除法运算,然后再进行减法运算即可得解.试题解析:22221244xyxyxyxxyy=2(2)1·2()()xyxy

xyxyxy=21xyxy=2xyxyxyxy=(2)xyxyxy=2xyxyxy=yxy21.计算:x﹣1÷[x(x﹣1)﹣1]•x(x+1)﹣1.【答案】1(1)xxx【解析】【分析】直接利用负整数指数幂的性质以及整式的乘除运算法

则计算得出答案.【详解】解:x﹣1÷[x(x﹣1)﹣1]•x(x+1)﹣1=111xxxxx=111xxxxx=1(1)xxx.【点睛】此题考查负整数指数幂运算法则,分式的乘除法计算法则,根据负整数指数幂定义将代数式化为正整数指数幂

进行运算是解题的关键.22.计算,结果用幂的形式:631622.【答案】2.【解析】【分析】将根式转化成分数指数幂,再根据幂运算法则计算.【详解】解:原式=11413636112216222=22=411+3622=21=2.【点睛】本题考查分数指数幂与根式的互化,幂

的运算法则.熟练掌握运算法则是解题的关键.23.解方程:223845656xxxxxx.【答案】无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到

分式方程的解.【详解】解:223845656xxxxxx,去分母得:3x﹣8=x﹣4,解得:x=2,经检验x=2是增根,分式方程无解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法,注意检验.24.解方程:221121xxx

x.【答案】x=1【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:221121xxxx,去分母得:x(x+1)+2=x2+2x+1,解得:x=1,经检验x=1是分式方程的解

.【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的方法进行解题.四、解答题(本大题共4小题,5+5+5+3分,满分18分)25.如图:AB∥CD,AE、DF分别是∠BAO、∠CDO的平分线,求证:AE∥DF.【答案】见解析【解析】

【分析】由题意依据平行线的性质,即可得到∠BAO=∠CDO,再根据角平分线的定义,即可得到∠EAO=12∠BAO=12∠CDO=∠FDO,进而判定AE∥DF.【详解】解:证明:∵AB//CD,∴∠BAO=∠CDO,又∵AE、DF分别是∠BAO、∠

CDO的平分线,∴∠EAO=12∠BAO=12∠CDO=∠FDO,∴AE//DF.【点睛】本题主要考查平行线的判定与性质,注意掌握平行线的判定是由角的数量关系判断两直线的位置关系以及平行线的性质是由平行关系来寻找角的数量关系是解题的关键.26.把一张长方形纸片ABCD沿EF折叠后ED与BC

的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.【答案】∠1=70°,∠2=110°【解析】【分析】由平行线的性质知∠DEF=∠EFG=55°,由折叠的性质知∠DEF=∠GEF=55°,则可求得∠2

=∠GED=110°,进而可求得∠1的值.【详解】∵AD∥BC,∴∠DEF=∠EFG=55°.由对称性知∠GEF=∠DEF∠GEF=55°,∴∠GED=110°.∵AD∥BC,∴∠2=∠GED=110°.∴∠1=180°-110°=70°,【点睛】本题考查了翻折的性质及平行线的性质,

平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.27.学生小李为使跳绳200次所用的时间减少10秒,必须把每秒钟的跳绳次数增加10%,问小李原来

跳绳200次所用的时间是多少秒?【答案】小李原来跳绳200次所用的时间为110秒.【解析】【分析】由题意设小李原来跳绳200次所用的时间为x秒,根据单位跳绳次数×时间=总次数列出方程求解即可.【详解】解:设小李原来跳绳200次所用的时间为x秒.根据题意得200(110%)(10

)200xx.解得:x=110.经检验:x=110是原方程的根.答:小李原来跳绳200次所用的时间为110秒.【点睛】本题考查分式方程的应用,解题的关键是仔细审题并从中找到等量关系.28.观察下列各式及验证过程:11122323

,验证:211121223232323.11113()23438,验证:21111313()23423423438.11114()345415,验证:21111414()345345345415.(1)按照上述三个等式及验

证过程的站本思路.猜想111()456______,并进行验证;(2)针对上述反映的规律.写出用n(2n,且n为自然数)表示的等式,并进行验证.【答案】(1)15524,验证详见解析;(2)11111()121(2)nnnnnnn,

验证详见解析【解析】【分析】(1)类比题目所给的解题方法即可解答;(2)根据上述变形过程的规律,观察根号外的和根号内的分子、分母之间的关系即可得出一般规律,再类比题目所给的解题方法验证即可.【详解】解:⑴15524验证:21

111515()456456456524.(2)11111()121(2)nnnnnnn.验证:111()12nnn1(1)(2)nnn21(1)(2)nnnn111(2)nn

nn.【点睛】本题考查了二次根式的性质及化简,同时也考查了学生由特殊到一般的归纳和推理能力.

baby熊
baby熊
深耕教育类文档。
  • 文档 5820
  • 被下载 240
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?