上海市第二工业大学附属龚路2020-2021七年级初一上学期数学期中试卷+答案

PDF
  • 阅读 26 次
  • 下载 0 次
  • 页数 17 页
  • 大小 460.208 KB
  • 2022-12-02 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【baby熊】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
上海市第二工业大学附属龚路2020-2021七年级初一上学期数学期中试卷+答案
可在后台配置第一页与第二页中间广告代码
上海市第二工业大学附属龚路2020-2021七年级初一上学期数学期中试卷+答案
可在后台配置第二页与第三页中间广告代码
上海市第二工业大学附属龚路2020-2021七年级初一上学期数学期中试卷+答案
可在后台配置第三页与第四页中间广告代码
上海市第二工业大学附属龚路2020-2021七年级初一上学期数学期中试卷+答案
上海市第二工业大学附属龚路2020-2021七年级初一上学期数学期中试卷+答案
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 17
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】上海市第二工业大学附属龚路2020-2021七年级初一上学期数学期中试卷+答案.pdf,共(17)页,460.208 KB,由baby熊上传

转载请保留链接:https://www.ichengzhen.cn/view-83304.html

以下为本文档部分文字说明:

2020学年第一学期初一数学期中质量调研试卷一、选择题:(本大题共6题,每题3分,满分18分)1.下列代数式中,单项式有()①25xy②2mn③4ab④m⑤5A.1个B.2个C.3个D.4个2.下列各式正确的是()A.52xx=10xB.2363()ababC.222()xyx

yD.336nnn3.下列各式中,从左到右变形是因式分解的是()A.22224ababab=B.2633mmmC.22542xxxxD.2933aaa4.列各式计算中,能用平方差公式进行计算的是()

A.(a-b)(b-a)B.(-a-b)(a+b)C.(-a+b)(a-b)D.(-a-b)(a-b)5.已知2412aabm是一个完全平方式,那么m为()A.23bB.2bC.29bD.236b6.在边长为a的正方形中挖去一个边长为b

的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a

-b)D.(a+2b)(a-b)=a2+ab-2b2二、填空题:(本大题共14题,每题2分,满分28分)7.用代数式表示:比m的平方多2的数为__________.8.当3a时,代数式2a的值为___

________.9.单项式23xy的系数是_______,次数是_______.10.若单项式212mxy和313nxy是同类项,则mn=__________.11.多项式32231xx是_______次多项式,常数项是_______.12.将223231xyxyx按x的降幂排

列为_______________________.13.计算:33(2)xy___________.14.计算:212(3)2xxx______________.15.计算:22242xyxyxy=______________.16.计算:202

0201913()3=_________________.17.因式分解:284aab=_________________________.18.若13xx,则221xx_______________.19.若2ma,4na则3mna_________

___.20.根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有____个点.三、简答题:(本大题共6题,每题5分,满分30分)21.计算:2342552()()xxxxxx22.计算:2323x

xx23.计算:(23)(23)xyzxyz24.利用乘法公式计算:220032008199225.因式分解:4481ab26.因式分解:222112aaab四、解答题:(本大题共4题,7分+6分+7分+4分,满分24分)27.先化简

再求值:2[2()]xyyxxxxy,其中12x,2y.28.甲商店9月份的销售额是m万元,由于十一黄金周的假日效应,预计10月份的销售额增加的百分数是x,各种原因导致11月份销售额与10月份相比减少的百分

数是x.(1)10月份的销售额是多少万元?(2)11月份的销售额比9月份的销售额减少了多少万元?29.小明将一根长为24厘米的铁丝分成两段,设其中一段铁丝长为x厘米,然后分别做成两个正方形.(1)用含x的代数式分别表示两个正

方形边长;(2)若两正方形的面积相差6平方厘米,求被分成的两段铁丝长?30.通过计算我们知道:(a-1)(a+1)=a2-1(a-1)(a2+a+1)=a3-1(a-1)(a3+a2+a+1)=a4-1(1)请根据以上计算规律填空:(a-1)(an+a

n-1+…+a3+a2+a+1)=______(2)根据上述规律,请你求出32018+32017+…+33+32+3+1的个位上的数字.2020学年第一学期初一数学期中质量调研试卷一、选择题:(本大题共6题,每题3分,满分18分)1.下列

代数式中,单项式有()①25xy②2mn③4ab④m⑤5A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据单项式的定义解答即可.【详解】解:25xy符合单项式的定义,是单项式;2mn是多项式;11=444abab是多项式;m符合单项式的定义,是单项式;5

是单项式;故选C.【点睛】此题较简单,解答此题的关键是熟知单项式及多项式的定义.单项式:数与字母的积叫单项式,单独的一个数或字母也叫单项式;多项式:几个单项式的和叫多项式.2.下列各式正确的是()A.52xx

=10xB.2363()ababC.222()xyxyD.336nnn【答案】B【解析】【分析】根据同底数幂的乘法运算法则、积的乘方运算法则、合并同类项运算法则进行判断解答即可.【详解】解:A、752xxx,此选项错误;B、2363()abab

,此选项正确;C、x2和y2不是同类项,不能合并,此选项错误;D、3323nnn,此选项错误,故选:B.【点睛】本题考查了同底数幂的乘法运、积的乘方、合并同类项,熟练掌握运算法则是解答的关键.3.下列各式中,从左

到右变形是因式分解的是()A.22224ababab=B.2633mmmC.22542xxxxD.2933aaa【答案】D【解析】【分析】根据因式分解的定义逐项判断即

可得.【详解】A、22224ababab=是整式的乘法,此项不符题意;B、2933mmm,则等式左右两边不相等,此项不符题意;C、22542xxxx没有将一个多项式转化成几个整式的乘积的形式,此项不符题意;D、

2933aaa,此项符合题意;故选:D.【点睛】本题考查了因式分解的定义,掌握理解定义是解题关键.4.列各式计算中,能用平方差公式进行计算的是()A.(a-b)(b-a)B.(-a-b)(a+b)C.(-a+b)(a-b)D.(-a-b)(a-b)【答案】D【解析】【分析】分别

将四个选项变形,找到符合a2−b2=(a−b)(a+b)的即可解答.【详解】解:A、(a−b)(b-a)=−(b-a)(b-a),不符合平方差公式,故本选项不符合题意;B、(−a−b)(a+b)=−(a+

b)(a+b),不符合平方差公式,故本选项不符合题意;C、(−a+b)(a−b)=−(a-b)(a-b),不符合平方差公式,故本选项不符合题意;D、(−a-b)(a−b)=−(a+b)(a−b)=-(a2−b2

),符合平方差公式,故本选项符合题意.故选:D.【点睛】本题考查了平方差公式,将算式适当变形是解题的关键.5.已知2412aabm是一个完全平方式,那么m为()A.23bB.2bC.29bD.236b【答案】C【解析】【分析】根据完全平方公式即可得.【详解】由题意得:22412(23)a

abmab,则2224124129aabmaabb,因此,29mb,故选:C.【点睛】本题考查了完全平方公式,熟记公式是解题关键.6.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验

证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2【答案】C【解析】【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论.【详解】解:甲图中阴影

部分的面积为大正方形的面积减去小正方形的面积,即22ab,乙图中阴影部分长方形的长为()ab,宽为()ab,阴影部分的面积为()()abab,根据两个图形中阴影部分的面积相等可得22()()ababab.故选:C.【点睛】本题考查了平方差公式的验证

,灵活表示图形的面积是解题的关键.二、填空题:(本大题共14题,每题2分,满分28分)7.用代数式表示:比m的平方多2的数为__________.【答案】22m【解析】【分析】比m的平方多2的数即22m.【详解】解:比m的平方多2的数为22m.故答案为:22m.【点

睛】此题只需仔细分析题意,即可解答.8.当3a时,代数式2a的值为___________.【答案】9【解析】【分析】直接代入求值即可.【详解】解:当3a时,22=3=9a故答案为:9.【点睛】此题主要考查求代数式的值,解题的关键是熟练掌握运

算法则.9.单项式23xy的系数是_______,次数是_______.【答案】(1).13(2).3【解析】【分析】根据单项式的系数与次数的定义即可得.【详解】单项式23xy的系数是13,次数是213,故答案为:13,3.【点睛】本题考查

了单项式的系数与次数,熟记定义是解题关键.10.若单项式212mxy和313nxy是同类项,则mn=__________.【答案】3【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,2=n+1,求出n,m

的值.【详解】解:根据题意得:3{21mn,解得:3{1mn,mn=3×1=3,故答案是:3.【点睛】本题考查了同类项定义,定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.11.

多项式32231xx是_______次多项式,常数项是_______.【答案】(1).三(2).1【解析】【分析】根据多项式的定义即可得.【详解】多项式32231xx是三次多项式,常数项是1,故答案为:三、1.【点睛】本题

考查了多项式,掌握理解多项式的概念是解题关键.12.将223231xyxyx按x的降幂排列为_______________________.【答案】322231xxyxy【解析】【分析】根据降幂排列

的定义进行解答即可.【详解】解:将223231xyxyx按x的降幂排列为:322231xxyxy.故答案为:322231xxyxy.【点睛】此题主要考查了多项式,关键是掌握按照某个字母进行降幂排列.13.计算:33(2)

xy___________.【答案】938xy【解析】【分析】直接根据积的乘方、幂的乘方法则即可求解.【详解】解:3393(2)8xyxy故答案为:938xy.【点睛】此题主要考查积的乘方、幂

的乘方运算,熟练掌握运算法则是解题关键.14.计算:212(3)2xxx______________.【答案】3226xxx【解析】【分析】根据单项式乘以多项式的运算法则进行计算即可得到结果.【详解】解:212(3)2xxx=2122232xxxxx=32

26xxx.故答案为:3226xxx.【点睛】本题考查了整式的运算,熟练掌握单项式乘以多项式的运算法则是解答此题的关键.15.计算:22242xyxyxy=______________.【答案】44

16xy【解析】【分析】可利用平方差公式进行计算.【详解】解:原式=22(2)(2)(4)xyxyxy=2222(4)(4)xyxy=4416xy故答案为:4416xy【点睛】本题主要考查平方差公式,灵活的应用平方差公式是解题得关键.16.计算

:2020201913()3=_________________.【答案】3【解析】【分析】根据积的乘方的逆用即可得.【详解】原式2019201913(3)3,201913(3)3

,2019(1)3,)3(1,3,故答案为:3.【点睛】本题考查了积的乘方的逆用,熟练掌握运算法则是解题关键.17.因式分解:284aab=_________________________.【答案】4(2)aab【解析】【分析】直接根据提

公因式法即可求解.【详解】解:284aab4a2ab故答案为:4a2ab.【点睛】此题主要考查因式分解,解题的关键是熟练掌握根据单项式的特点选择合适的方法.18.若13xx,则221xx_______________.【答案】11【解析】【分析】先利用差的完全平方公式逆运算

进行整理,然后整体代入求值即可.【详解】解:222112xxxx∵13xx∴222132=11xx故答案为:11.【点睛】此题主要考查求代数式的值,解题的关键是将式子整理为能够整体代入的形式.19.若2ma,4na则3mna___

_________.【答案】32【解析】【分析】根据同底数幂乘法的逆用、幂的乘方的逆用即可得.【详解】2,4mnaa,33mnmnaaa,3mnaa,324,84,32,故答案为:32.【点睛】本题考查了同底数幂乘法的逆用、幂的乘

方的逆用,熟练掌握各运算法则是解题关键.20.根据下列5个图形及相应点的个数的变化规律,试猜测第n个图中有____个点.【答案】n(n-1)+1【解析】【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【详解】观察图形点分布的变化规律,发现第一个图形只有一

个中心点;第二个图形中除中心外还有两边,每边一个点;第三个图形中除中心点外还有三个边,每边两个点;依此类推,第n个图形中除中心外有n条边,每边n-1个点,故第n个图形中点的个数为n(n-1)+1.三、简答题:(本大题共6题,每题5分,满分30分)21.计算:2342552()()

xxxxxx【答案】10x【解析】【分析】此题在解答时直接利用同底数幂的乘法法则和幂的乘方法则分别进行运算,再合并同类项即可.【详解】解:原式10101010()xxxx.【点睛】此题主要考查整式的混合运算,正确运用乘法公

式是解题的关键.22.计算:2323xxx【答案】515x【解析】【分析】利用完全平方公式、多项式乘以多项式的运算法则、合并同类项进行化简计算即可.【详解】解:原式22669xxxx2266

9xxxx515x.【点睛】本题考查完全平方公式、多项式乘以多项式、合并同类项,熟记公式和运算法则是解答的关键.23.计算:(23)(23)xyzxyz【答案】222694xxzzy.【解析】【分析】

先利用平方差公式,再利用完全平方公式进行计算即可得.【详解】原式(3)2(3)2xzyxzy,22(3)4xzy,222694xxzzy.【点睛】本题考查了利用平方差公式、完全平方公式进行运算,熟记乘法公式是解题关键.

24.利用乘法公式计算:2200320081992【答案】12073.【解析】【分析】先将2003改写成2000与3的和的形式、2008改写成2000与8的和的形式、1992改写成2000与8的差的形式,再分别利用完全平方公式、平方差公式进行运算即可得.【详解】原式2(20003)(

20008)(20008),222000120009(200064),222000120009200064,12073.【点睛】本题考查了利用乘法公式进行运算,熟记公式是解题关键.25.因式分解:4481ab【答案】22(3(3)(9))ababab

【解析】【分析】根据平方差公式得到2222)(9)(9abab,再由22(9)ab根据平方差公式得到(3(3))abab,即可得到答案.【详解】4481ab=2222)(9)(9abab=22(3(3)(9))ababab

.【点睛】本题考查用平方差公式进行因式分解,解题的关键是掌握用平方差公式进行因式分解.26.因式分解:222112aaab【答案】(21)()()aabab【解析】【分析】直接提取公因式(2a-1),再利用平方差

公式分解因式即可.【详解】解:222112aaab22(21)(21)aaab22(21)()aab(21)()()aabab.【点睛】此题主要考查了提取公因式法以及运用公式法分解因式,正确应用公式是解答此题的关键.四、解答

题:(本大题共4题,7分+6分+7分+4分,满分24分)27.先化简再求值:2[2()]xyyxxxxy,其中12x,2y.【答案】24xyy,-8【解析】【分析】根据完全平方公式和去括号法则化简题目中的式子

,再把x,y的值代入化简后的式子即可解答本题.【详解】解:2[2()]xyyxxxxy22()()(22)xyxyxxxy222(2)2xxyyxxy22222xxyyxxy24xyy;当1,22xy时,22144(2)(2)2

xyy448.【点睛】本题考查了整式的混合运算—化简求值,解答本题的关键是明确整式化简求值的方法.28.甲商店9月份的销售额是m万元,由于十一黄金周的假日效应,预计10月份的销售额增加的百分

数是x,各种原因导致11月份销售额与10月份相比减少的百分数是x.(1)10月份的销售额是多少万元?(2)11月份的销售额比9月份的销售额减少了多少万元?【答案】(1)(1)mx万元;(2)减少了2mx万元.

【解析】【分析】(1)根据“10月份的销售额9月份的销售额(1增加的百分数)”即可得;(2)先根据“11月份的销售额10月份的销售额(1减少的百分数)”求出11月份的销售额,再利用9月份的销售额减去11月份的销售额即可得.【详解】(1)由题意得:10月份的销

售额为(1)mx万元;(2)11月份的销售额为(1)(1)mxx万元,则(1)(1)mmxx,2(1)mmx,2mmmx,2mx(万元),答:11月份的销售额比9月份的销售额减少了2mx万元.【点睛】本题考查了列代数式

、整式的乘法与加减法的应用,依据题意,正确列出代数式是解题关键.29.小明将一根长为24厘米的铁丝分成两段,设其中一段铁丝长为x厘米,然后分别做成两个正方形.(1)用含x的代数式分别表示两个正方形边长;(2)若两正方形的面积相差6平方厘米,求被分成的两段铁丝长?【答案】(1)24;44

xx(或64x);(2)两段铁丝分别为14cm,10cm.【解析】【分析】(1)根据正方形边长=周长÷4求解即可;(2)根据“两正方形的面积相差6平方厘米”列方程求解即可.【详解】解:(1)设其中一段铁丝长为x厘米,则另一段长为(24-x)厘米,所以,小正方形的边长为4

x厘米;大正方形的边长为244x=(64x)厘米;(2)根据题意得,22()(6)644xx或226644xx解得,14x或x10所以,24-14=10cm;24-10=14cm答:两端铁丝分别为

14cm,10cm.【点睛】此题主要考查了列代数式以及一元一次方程的应用,熟练掌握运用等量关系列方程是解答此题的关键.30.通过计算我们知道:(a-1)(a+1)=a2-1(a-1)(a2+a+1)=a3-1(a-1)(a3+a2+a+1)=a4-1(1)请根据以上计算

规律填空:(a-1)(an+an-1+…+a3+a2+a+1)=______(2)根据上述规律,请你求出32018+32017+…+33+32+3+1的个位上的数字.【答案】(1)an+1-1;(2)12(32019-1)【解析】【分析】(1)通过计算先找到规律,根据规律得结论;(2

)先把32018+32017+…+33+32+3+1乘以12(3-1)变形为(1)中规律的形式,计算出结果.再找到3n的个位数字变化规律,得结论.【详解】解:(1)由以上计算规律可知:(a-1)(an+an-1+…+a3+a2+a+1)=an+

1-1,故答案为an+1-1;(2)32018+32017+…+33+32+3+1=12(3-1)(32018+32017+…+33+32+3+1)=12(32019-1)因为31=3,32=9,33=27,34=81,35的个位数字为3,36的个位数字为

9,37的个位数字为7,38的个位数字为1…所以32019的个位数字是7,所以原式的个位数字是3.【点睛】本题考查了多项式乘以多项式,特殊数的个位数字特点.题目难度较大.解决本题的关键是把(2)变形为(1)的规律通项.

baby熊
baby熊
深耕教育类文档。
  • 文档 5820
  • 被下载 238
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?