上海闵行区2022届九年级初三数学一模试卷+答案

PDF
  • 阅读 99 次
  • 下载 0 次
  • 页数 14 页
  • 大小 1.018 MB
  • 2022-12-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【baby熊】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
上海闵行区2022届九年级初三数学一模试卷+答案
可在后台配置第一页与第二页中间广告代码
上海闵行区2022届九年级初三数学一模试卷+答案
可在后台配置第二页与第三页中间广告代码
上海闵行区2022届九年级初三数学一模试卷+答案
可在后台配置第三页与第四页中间广告代码
上海闵行区2022届九年级初三数学一模试卷+答案
上海闵行区2022届九年级初三数学一模试卷+答案
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 14
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】上海闵行区2022届九年级初三数学一模试卷+答案.pdf,共(14)页,1.018 MB,由baby熊上传

转载请保留链接:https://www.ichengzhen.cn/view-125367.html

以下为本文档部分文字说明:

2022年上海市闵行区中考数学一模试卷2022.1一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在RtABC中,各边的长度都扩大4倍.那么锐角B的正切值()A.

扩大4倍B.扩大2倍C.保持不变D.缩小4倍2.在RtABC中,90,4,3CBCAC,那么A的三角比值为35的是()A.sinAB.cosAC.tanAD.cotA3.下列二次函数与抛物线223yxx的对称轴相同的函数是()A.243yxx

B.223yxxC.2367yxxD.2152yxx4.如图,已知在ABC中,点D在边AB上,那么下列条件中不能..判定ABCACD的是()A.ACABCDBCB.2ACADABC.BACDD.ADCACB5.如果abc,3abc

,且0c,那么下列结论正确的是()A.=abB.20abC.a与b方向相同D.a与b方向相反6.二次函数20yaxbxca的图像如图所示,现有以下结论:(1)0b:(2)0abc;(3)0abc,(4)0abc

;(5)240bac;其中正确的结论有()A.2个B.3个C.4个D.5个.二、填空题(本大题共12题,每题4分,满分48分)[在答题纸相应题号后的空格内直接填写答案]7.如果:5:2xy,那么:xyy的值为_

________.8.已知线段AB的长为2厘米,点P是线段AB的黄金分割点,那么较长线段AP的长是_________厘米.9.在RtABC中,290,4,sin3CBCA,那么AB的长是_________.10.两个相似三角形的面积之比是9:25,其中较大的

三角形一边上的高是5厘米,那么另一个三角形对应边上的高为_________厘米.11.e为单位向量,a与e的方向相同,且长度为2,那么a_________e12.如果拋物线21yxm的顶点是坐标轴的原点,那

么m的值是__________.13.已知二次函数212fxxbxc图像的对称轴为直线4x,那么1f________3f.(填“>”或“<”或“=”)14.如图所示,用手电来测量古城墙高度,将水平的平面镜放置在点P处,光线从点

A出发,经过平面镜反射后,光线刚好照到古城墙CD的顶端C处.如果ABBD,,1.5CDBDAB米,1.8BP米,12PD米,那么该古城墙的高度是_______米15.如图,某幢楼的楼梯每一级台阶的高度为20厘

米,宽度为30厘米,那么斜面AB的坡度为__________.16.如图,已知在RtABC△中,90,30,1,ACBBACD是AB边上一点,将ACD△沿CD翻折,点A恰好落在边BC上的点E处,那么AD__________.17.如图

,在平面直角坐标系中,已知点A的坐标为,3(4)aa,射线OA与反比例函数12yx的图像交于点P,过点A作x轴的垂线交双曲线于点B,过点A作y轴的垂线交双曲线于点C,联结、BPCP,那么ABPACPSS的值是__________.18.如图,在RtABC中,90

,8,6CACBC,点P是AC边上一点,将ACB△沿着过点P的一条直线翻折,使得点A落在边AB上的点Q处,联结PQ,如果CQBAPQ,那么AQ的长为__________.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应

位置上]19.(本题满分10分)计算:1014tan4531231.20.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,,ADBE是ABC的中线,交于点G,且,ABaBCb

.(1)直接写出向量AG关于ab、的分解式,AG__________;(2)在图中画出向量BG在向量a和b方向上的分向量.(不要求写作法,但要保留作图痕迹,并写明结论)21.(本题满分10分,第(1)小题6分,第(2)小题4分)如图,已知

在RtABC中,90,tan2ACBCAB,点A的坐标为()1,0-,点B在x轴正半轴上,点C在y轴正半轴上.(1)求经过BC、两点的直线的表达式;(2)求图像经过、、ABC三点的二次函数的解析式.22.(本题满分

10分)为了维护南海的主权,我国对相关区域进行海空常态化立体巡航.如图,在一次巡航中,预警机沿AE方向飞行,驱护舰沿BP方向航行,且航向相同AEBP∥.当顼紫机飞行到A处时,测得航行到B处的驱护舰的俯角为45,此时B距离相关岛屿P恰为60千米;当预警机飞

行到C处时,驱护舰恰好航行到预警机正下方D处,此时10CD千米,当预警机继续飞行到E处时,驱护舰到达相关岛屿,P且测得E处的预警机的仰角为22.求预警机的飞行距离AE.(结果保留整数)(参考数据:sin220.37,cos220.93,tan220.40.)23.(本题满

分12分,第(1)小题6分,第(2)小题6分)如图,在等腰ABC中,ABAC,点D是边BC上的中点,过点C作CEBC,交BA的延长线于点E,过点B作BHAC,交AD于点F,交AC于点H,交CE于点

G.求证:(1)BCBHCHEC;(2)24BCDFDA.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xQy中,直线5yx与x牰交于点A,与y轴交于点B.点C为拋物线223122yaxaxaa的顶点.(1

)用含a的代数式表示顶点C的坐标;(2)当顶点C在AOB内部,且52AOCS时,求抛物线的表达式;(3)如果将抛物线向右平移一个单位,再向下平移12个单位后,平移后的抛物线的顶点P仍在AOB内,求a的取值范围.25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)

已知四边形ABCD是菱形,4AB,点E在射线CB上,点F在射线CD上,且EAFBAD.(1)如图①,如果90BAD,求证:AEAF;(2)如图②,当点E在CB的延长线上时,如果60ABC,设,AFDFxyAE

,试建立y与x的函数关系式,并写出x的取值范围;(3)联结,2ACBE,当AEC△是等腰三角形时,请直接写出DF的长.2022年上海市闵行区中考数学一模试卷答案一、选择题:(本大题共6题,每题4分,满分24分)1.C2.B3.D4.A5.D6.C二、填空題:(本大题共12题,每题4分,

满分48分)7.728.(51)9.610.311.212.m=-113.>14.1015.2316.3117.118.395三、解筨题:(本大题共7题,满分78分)19.解:原式4(31)112(31)(31),112232,232.20.【答

案】(1)2133ab;(2)见解析【解析】【分析】(1)根据三角形中线性质和重心性质可得BD=12BC,AG=23AD,由ADABBD求解即可;(2)过点G分别作AB、BC的平行线,分别交BC、AB于H、F,作向量BF、BH即可.【小问1详解】解

:∵,ADBE是ABC的中线,交于点G,∴BD=12BC,AG=23AD,∵,ABaBCb,∴ADABBD=12ab,∴22121()33233AGADabab,故答案为:2133ab;【小问2

详解】解:如图所示,BF、BH是向量BG在向量a和b方向上的分向量.21.【答案】(1)12.2yx=-+(2)2132.22yxx【解析】【分析】(1)利用tan2CAB先求解C的坐标,再证明,tantan,CAOB

COCAOBCO�行=再求解B的坐标,利用待定系数法求解BC的解析式即可;(2)根据抛物线与x轴的交点设抛物线为()()14,yaxx=+-再把C的坐标代入求解a即可.【小问1详解】解:tan2CAB,点A的坐标为()1,0-,,AOCO2,OCOA\=则()2,0,

2,OCC=90,90,ACBAOC�靶=Q90,CAOACOACOBCO\Ð+Ð=°=Ð+Ð,tantan,CAOBCOCAOBCO\�行=2,24,OBOBOCOC\===4,0,B设直线BC为:1,ykx

b=+1140,2kbbì+=ï\í=ïî解得:1122kbì=-ïíï=î,所以直线BC为:12.2yx=-+【小问2详解】解:设过()()()1,0,4,0,0,2ABC-的抛物线为:()()14,yaxx=+-42,a

\-=解得:1,2a所以抛物线为:()()2113142.222yxxxx=-+-=-++22.【答案】预警机的飞行距离AE为95千米【解析】【分析】过B作BH⊥AE于H,过E作EF⊥BP交延长线于F,利用锐角三角函数解直角三角形求得AH、PF即可.【详解】解:过B作BH⊥AE于H,过E

作EF⊥BP交延长线于F,则∠AHB=∠EFP=90°,由题意,∠A=45°,∠EPF=22°,BH=CD=EF=10千米,EH=BF,BP=60千米,在Rt△AHB中,∠A=45°,BH=10千米,∴AH=BH=10千米,在Rt△EF

P中,∠EPF=22°,EF=10千米,∴1025tan220.4EFPF,∴AE=AH+HE=10+60+25=95(千米),答:预警机的飞行距离AE为95千米.23.【答案】(1)见解析(2)见解析【解析】【分析】(1)利用已知条件证明BCECHB∽即可;

(2)通过证明ADCBDF∽得出DCADDFBD,再根据12BDDCBC,得出结论.【小问1详解】证明:CEBC,BHAC,90BCECHB,ABAC,ABCACB

,BCECHB∽,BCCECHBH,BCBHCHEC;【小问2详解】证明ABAC,点D是边BC上的中点,ADBC,BHAC,90ADCAHF,DACHAF,ACDAFH

,AFHBFD,ACDBFD,90ADCBDF,ADCBDF∽,DCADDFBD,12BDDCBC,214BCADDF,即24BCDFDA.24.【答案】(1)2()1,Caa(2)2289yxx;(3)1<a<3【解析】【分析

】(1)利用配方法将抛物线解析式化为顶点式即可解答;(2)求出点A、B的坐标,利用三角形面积公式求解a值即可解答;(3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解【小问1

详解】解:拋物线2232112()22yaxaxaaaxaa,∴顶点C的坐标为1(,)2aa;【小问2详解】解:对于5yx,当x=0时,y=5,当y=0时,x=5,∴A(5,0),B(0,5),∵顶点C在AOB内部,且52AOCS,∴1155222a,∴a=2,

∴拋物线的表达式为2289yxx;【小问3详解】解:由题意,平移后的抛物线的顶点P的坐标为11(1,)22aa,∵平移后的抛物线的顶点P仍在AOB内,∴101102211(1)522aaaa,解得:1<a<3,即a的取值范围为1<a<3.25.【

答案】(1)证明过程详见解答;(2)4(04)4xyx(3)85DF或167【解析】【分析】(1)先证明四边形ABCD是正方形,再证明ABEADF,从而命题得证;(2)在AD上截取DGD

F,先证明DGF是正三角形,再证明ABEAGF∽,进一步求得结果;(3)当AEAC时,作AHCE⊥于H,以F为圆心,DF为半径画弧交AD于G,作FNAD于N,证明ABHFND∽,AGFABE

,可推出12DGDF,再证明ABEAGF∽,可推出442DGGF,从而求得DF,当6ACCE时,作AHCE⊥于H,以F为圆心,DF为半径画弧交AD于G,作FNAD于N,作BMAC于M,先根据1122ABCSACBMBCAH求得AH,进而求得BH,根据ABH

FGN∽,ABEAFF∽,14DGGF和412DGGF,从而求得DF,根据三角形三边关系否定AECE,从而确定DF的结果.【小问1详解】解:证明:四边形ABCD是菱形,90BAD,菱形ABCD是正方形,90BAEABCADF,ADAB,BAED

AFQ,()ABEADFASA,AEAF;【小问2详解】解:如图1,在AD上截取DGDF,四边形ABCD是菱形,60ADFABC,6ADAB,DGF是正三角形,60DFG,GFDFDGx,120AGFABE,4AG

x,BAEDAFQ,ABEAGF∽,AFAGAEAB,4(04)4xyx;【小问3详解】如图2,当AEAC时,作AHCE⊥于H,以F为圆心,DF为半径画弧交AD于G,作FNAD于N,11(

42)322CHCE,90FNDAHB,DFGD,2DGDN,431BHBCCH,四边形ABCD是菱形,DABC,ABHFND∽,AGFABE,14DNBHDFAB,12DGGF①,BAEDAFQ,ABEAGF∽

,AGGFABBE,442DGGF②,由①②得,85GF,85DF,如图3,当6ACCE时,作AHCE⊥于H,以F为圆心,DF为半径画弧交AD于G,作FNAD于N,作BMAC于M,132CMAC,227BMBCCM,由1122ABCS

ACBMBCAH得,674AH,372AH,2212BHABAH,由第一种情形知:ABHFGN∽,ABEAFF∽,18GNBHFGAB,12AGABGFBE,14DGGF①,412DGGF②,由①②得,167GF,167

DF,ABBEAE,BCBEAE,即CEAE,综上所述:85DF或167.

baby熊
baby熊
深耕教育类文档。
  • 文档 5820
  • 被下载 238
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?