【文档说明】高考数学(全国甲卷通用理科)知识 方法篇 专题5 数列、推理与证明 第23练 含答案.doc,共(10)页,101.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-75695.html
以下为本文档部分文字说明:
第23练常考的递推公式问题的破解方略[题型分析·高考展望]利用递推关系式求数列的通项公式及前n项和公式是高考中常考题型,掌握常见的一些变形技巧是解决此类问题的关键.一般这类题目难度较大,但只要将已知条件转化为几类“模型”,然后采用相应的计算方法即可解决.体验高考1.(201
5·湖南)设Sn为等比数列{an}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则an=________.答案3n-1解析由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,∴公比q=3,故等比数列通项a
n=a1qn-1=3n-1.2.(2015·课标全国Ⅱ)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.答案-1n解析由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+
1-Sn=SnSn+1,因为Sn≠0,所以Sn+1-SnSnSn+1=1,即1Sn+1-1Sn=-1,故数列1Sn是以1S1=-1为首项,-1为公差的等差数列,得1Sn=-1-(n-1)=-n,所以Sn=-1n.3.(2015·江苏)设数列{an}满足a1=1,且an+1-an=n+1
(n∈N*),则数列1an前10项的和为________.答案2011解析∵a1=1,an+1-an=n+1,∴a2-a1=2,a3-a2=3,„,an-an-1=n,将以上n-1个式子相加得an-a1=2+3+„+n=2+nn-12,即an=nn+12.
令bn=1an,故bn=2nn+1=21n-1n+1,故S10=b1+b2+„+b10=21-12+12-13+„+110-111=2011.4.(2016·课标全国丙)已知数列{an}的前n项和Sn=1+λan,其中λ≠0.(1)证明{an}是等比数列
,并求其通项公式;(2)若S5=3132,求λ.(1)证明由题意,得a1=S1=1+λa1,故λ≠1,a1=11-λ,a1≠0.由Sn=1+λan,Sn+1=1+λan+1,得an+1=λan+1-λan,即an+1(λ-1)=λan,由a1≠0,λ≠0得an≠0,所以an+1an=λλ-
1.因此{an}是首项为11-λ,公比为λλ-1的等比数列,于是an=11-λλλ-1n-1.(2)解由(1)得Sn=1-λλ-1n.由S5=3132,得1-λλ-15=3132
,即λλ-15=132.解得λ=-1.高考必会题型题型一利用累加法解决递推问题例1(1)在数列{an}中,a1=1,an-an-1=1nn-1,则an等于()A.2-1nB.1-1nC.1nD.2-1n-1答案A解析∵an-a
n-1=1nn-1,∴a2-a1=11×2,a3-a2=12×3,a4-a3=13×4,„,an-an-1=1nn-1(n>1),以上各式左右两边分别相加得an-a1=11×2+12×3+13×4+„+1nn-1=1-12+12-13+
„+1n-1-1n=1-1n,∴an=a1+1-1n=2-1n,又a1=1适合上式,∴an=2-1n,故选A.(2)在数列{an}中,已知a1=2,an+1=an+cn(n∈N*,常数c≠0),且a1,a2,a3成等比数列.①求c
的值;②求数列{an}的通项公式.解①由题意知,a1=2,a2=2+c,a3=2+3c,∵a1,a2,a3成等比数列,∴(2+c)2=2(2+3c),解得c=0或c=2,又c≠0,故c=2.②当n≥2时,由an+1=an+cn,得a2-a1=c,a3-a2=2c,„,an-an-1=(n-1)c,
以上各式相加,得an-a1=[1+2+„+(n-1)]c=n(n-1)2c.又a1=2,c=2,故an=n2-n+2(n≥2),当n=1时,上式也成立,∴数列{an}的通项公式为an=n2-n+2(n∈N*).点评由已
知递推关系式,若能转化为an+1=an+f(n),或1an+1-1an=f(n)且f(n)的和可求,则可采用累加法.变式训练1在数列{an}中,a1=1,an+1-an=ln(1+1n),则an等于()A.1+n+lnnB.1+nlnnC.1+(n-1)lnnD.1+lnn答案D解析∵
a1=1,an+1-an=ln(1+1n),∴an=(an-an-1)+(an-1-an-2)+„+(a2-a1)+a1=ln(1+1n-1)+ln(1+1n-2)+„+ln(1+1)+1=ln(nn-1×n-1
n-2ׄ×2)+1=1+lnn.题型二利用累乘法解决递推问题例2(1)已知正项数列{an}满足a1=1,(n+2)a2n+1-(n+1)a2n+anan+1=0,则它的通项公式为()A.an=1n+1B.an=2n+1C.an=n+12D.an=n(2)已知数列{an}中,a1=1,an
an+1-an=n(n∈N*),则a2016=________.答案(1)B(2)2016解析(1)由(n+2)a2n+1-(n+1)a2n+anan+1=0,得[(n+2)an+1-(n+1)an](a
n+1+an)=0,又an>0,所以(n+2)an+1=(n+1)an,即an+1an=n+1n+2,an+1=n+1n+2an,所以an=nn+1·n-1n·„·23a1=2n+1a1(n≥2),所以an=2n+1(n=1适合),于是所求通项公
式为an=2n+1.(2)由anan+1-an=n(n∈N*),得an+1an=n+1n,a2a1=21,a3a2=32,a4a3=43,„,anan-1=nn-1,各式相乘得ana1=n,∴an=n(n=1适合),∴a2016=2016.点评若由已知递推
关系能转化成an+1an=f(n)的形式,且f(n)的前n项积能求,则可采用累乘法.注意验证首项是否符合通项公式.变式训练2数列{an}的前n项和Sn=n2an(n≥2),且a1=1,a2=2,则{an}的通项公式an=______________.答案1,n=1,2n-1,n≥2解
析∵Sn-1=n-12an-1(n≥3),∴Sn-Sn-1=n2an-n-12an-1,∴an=n2an-n-12an-1,∴anan-1=n-1n-2.∴当n≥3时,a3a2·a4a3·„·anan-1=2
·32·43·„·n-1n-2,∴ana2=n-1,∴an=(n-1)·a2=2(n-1)(n≥3).∵a2=2满足an=2(n-1),∴an=1,n=1,2n-1,n≥2.题型三构造法求通项公式例3(1)数列
{an}中,a1=12,an+1=nann+1nan+2(n∈N*),则数列{an}的通项公式an=________.(2)已知a1=1,an+1=anan+1,则an=________.答案(1)1n3·2n-1-1(2)1n解析(1)由已知可得(n
+1)an+1=nannan+2,设nan=bn,则bn+1=bnbn+2,所以1bn+1=2bn+1,两边都加1可得1bn+1+1=2bn+2=2(1bn+1),即{1bn+1}是公比为2,首项为3的等比数列.故1bn+1=3
·2n-1,所以1bn=3·2n-1-1=1nan,所以an=1n3·2n-1-1(n=1适合),于是所求通项公式为an=1n3·2n-1-1.(2)由an+1=anan+1,得1an+1-1an=1(常数),又1a1=1,∴{1an}为以1为首项,1为公差
的等差数列,∴1an=n,从而an=1n,即所求通项公式为an=1n.点评构造法就是利用数列的递推关系灵活变形,构造出等差、等比的新数列,然后利用公式求出通项.此类问题关键在于条件变形:在“an=can-1+b”的条件下,可构造“an+x=c(an-1+x)”在“an=man-
1kan-1+m”的条件下,可构造“1an=1an-1+km”.变式训练3已知数列{an}中,a1=2,当n≥2时,an=7an-1-33an-1+1,求数列{an}的通项公式.解因为当n≥2时,an-1=4an-1-43an-1+1,两边取倒数,得1an-1=1an-
1-1+34.即1an-1-1an-1-1=34,故数列1an-1是首项为1a1-1=1,公差为34的等差数列.所以1an-1=1a1-1+34(n-1)=3n+14.所以an=3n+53n+1.又当n=1时,上式也成立,故数列{a
n}的通项公式是an=3n+53n+1(n∈N*).高考题型精练1.数列{an}满足a1=1,a2=23,且1an-1+1an+1=2an(n≥2),则an等于()A.1n+1B.(23)n-1C.(23)nD.2n+1答案D解析由题意知{1an}是等差数列,又1a1=1,
1a2=32,∴公差为d=1a2-1a1=12,∴1an=1a1+(n-1)×12=n+12,∴an=2n+1,故选D.2.已知数列{an}中,a1=1,且1an+1=1an+3(n∈N*),则a10等于()A.28B.33C.13
3D.128答案D解析由已知1an+1-1an=3(n∈N*),所以数列{1an}是以1为首项,3为公差的等差数列,即1an=1+(n-1)×3=3n-2,解得an=13n-2,a10=128,故选D.3.已知数列{an}中,a1=12,an+1=an+1n2+3n+2(n∈N*),则数列{an
}的通项为()A.an=1n+1B.an=nn+1C.an=12+n-1n2+n+2D.an=n+1n+2答案B解析由an+1=an+1n2+3n+2可得,an+1-an=1n2+3n+2=1n+1n+2=
1n+1-1n+2,所以a2-a1=12-13,a3-a2=13-14,a4-a3=14-15,„,an-an-1=1n-1n+1,累加可得an-a1=12-1n+1,又a1=12,所以an=nn+1,故选B.4.已知f(x)=log2x1-x
+1,an=f(1n)+f(2n)+„+f(n-1n),n为正整数,则a2016等于()A.2015B.2009C.1005D.1006答案A解析因为f(x)=log2x1-x+1,所以f(x)+f(1-x)=log2x1-x+1+log21-xx+1=2.所以f
(1n)+f(n-1n)=2,f(2n)+f(n-2n)=2,„,f(n-1n)+f(1n)=2,由倒序相加,得2an=2(n-1),an=n-1,所以a2016=2016-1=2015,故选A.5.已知数列{an}满足a1=1,an+1=an+n+2n(n∈N*),则an为(
)A.nn-12+2n-1-1B.nn-12+2n-1C.nn+12+2n+1-1D.nn-12+2n+1-1答案B解析∵an+1=an+n+2n,∴an+1-an=n+2n.∴an=a1+(a2-a1)+(a3-a2)+„+(an-an-1)=1+(1+2)
+(2+22)+„+[(n-1)+2n-1]=1+[1+2+3+„+(n-1)]+(2+22+„+2n-1)=1+n-1n2+21-2n-11-2=nn-12+2n-1.6.已知数列{an}满足a1=
1,an=an-1+2n(n≥2),则a7等于()A.53B.54C.55D.109答案C解析∵an-an-1=2n(n≥2),∴a2-a1=4,a3-a2=6,a4-a3=8,„a7-a6=14,以上各式两边分别相加得a7-a1=4+6+„+14,a7=1+4+14×
62=55.7.数列{an}中,a1=1,an=2·3n-1+an-1(n≥2),则an=________.答案3n-2解析因为an=2·3n-1+an-1(n≥2),所以an-an-1=2·3n-1(n≥2),由叠加原理知an
-a1=2(3+32+33+„+3n-1)(n≥2),所以an=a1+231-3n-11-3=1+3n-3=3n-2(n≥2),因为a1=1也符合上式,故an=3n-2.8.若数列{an}满足an=3an-1+2(n≥2,n∈N*),a1=
1,则数列{an}的通项公式an=________________.答案2×3n-1-1解析设an+λ=3(an-1+λ),化简得an=3an-1+2λ,∵an=3an-1+2,∴λ=1,∴an+1=3(an-1+1).∵a1=
1,∴a1+1=2,∴数列{an+1}是以2为首项,3为公比的等比数列,∴an+1=2×3n-1,∴an=2×3n-1-1.9.若数列{an}满足a1=1,且an+1=4an+2n,则通项an=________________.答案22n-1-2n-1解析∵an+1=4an+2n,
∴an+12n+1=2an2n+12,设bn=an2n,则bn+1=2bn+12,∴bn+1+12=2(bn+12),即bn+1+12bn+12=2,又b1+12=1,∴{bn+12}是等比数列,其中首项为1,公比为2,∴bn+12=2n-1,即bn=
2n-1-12,即an2n=2n-1-12,∴an=2n(2n-1-12)=22n-1-2n-1.10.设{an}是首项为1的正项数列,且(n+1)a2n+1-na2n+an+1an=0(n∈N*),则它的通项公式an=________________.答案1n解
析对原关系式进行等价变形可得(n+1)a2n+1-na2n+an+1an=0(n∈N*)⇒[(n+1)an+1-nan](an+1+an)=0,因为{an}是正项数列,所以(n+1)an+1-nan=0,从而n+1an+1nan=1,
即数列{nan}是首项为1,公比为1的等比数列,所以nan=1,即an=1n.11.数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.(1)设bn=an+1-an,证明{bn}是等差数列;(2)求{an}的通
项公式.(1)证明由an+2=2an+1-an+2,得bn+1-bn=an+2-2an+1+an=2an+1-an+2-2an+1+an=2,又b1=a2-a1=1,∴{bn}是首项为1,公差为2的等差数列.(2)解由(1)得bn=2n-1,于是an+1-an=2n-1,an=
[(a2-a1)+(a3-a2)+…+(an-an-1)]+a1=[1+3+…+(2n-3)]+1=(n-1)2+1,而a1=1也符合,∴{an}的通项公式an=(n-1)2+1.12.已知数列{an}的首项a1=1,前n项和为Sn,且Sn+1=2Sn+n+1(n∈N*).(1)
证明数列{an+1}是等比数列,并求数列{an}的通项公式;(2)求数列{nan+n}的前n项和Tn.解(1)由已知,Sn+1=2Sn+n+1(n∈N*),当n≥2时,Sn=2Sn-1+n,两式相减得,an+1=2an+1,于是an
+1+1=2(an+1)(n≥2).当n=1时,S2=2S1+1+1,即a1+a2=2a1+1+1,所以a2=3,此时a2+1=2(a1+1),且a1+1=2≠0,所以数列{an+1}是首项为a1+1=2,公比为2的等比数列.所以an+1=2·2n-1,即an=2n-1
(n∈N*).(2)令cn=nan+n,则cn=n·2n,于是Tn=1·21+2·22+„+n·2n,2Tn=1·22+„+(n-1)·2n+n·2n+1,两式相减得,-Tn=2+22+„+2n-n·2n+1=22n-12-1-n·2n+1=(
1-n)·2n+1-2,所以Tn=(n-1)·2n+1+2.