【文档说明】2021年高中数学人教版必修第一册:3.2.1《单调性与最大(小)值》精品课件 (含答案).ppt,共(38)页,1.250 MB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-31104.html
以下为本文档部分文字说明:
人教A版必修第一册第三章函数的概念与性质3.2.1单调性与最大(小)值课程目标1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会
运用函数图象理解和研究函数的性质.数学学科素养1.数学抽象:用数学语言表示函数单调性和最值;2.逻辑推理:证明函数单调性;3.数学运算:运用单调性解决不等式;4.数据分析:利用图像求单调区间和最值;5.数学建模:
在具体问题情境中运用单调性和最值解决实际问题。自主预习,回答问题阅读课本76-77页,思考并完成以下问题1.增函数、减函数的概念是什么?2.如何表示函数的单调区间?3.函数的单调性和单调区间有什么关系?•要求:学生独
立完成,以小组为单位,组内可商量,最终选出代表回答问题。2.单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛]一个函数出现两个或者两个以上
的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=在(-∞,0)∪(0,+∞)上单调递减.自主预习,回答问题阅读课本79-80页,思考并完成
以下问题1.函数最大(小)值的定义是什么?2.从函数的图象可以看出函数最值的几何意义是什么?•要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。[点睛]最大(小)值必须是一个函数值,是值域中的一个元素,如函数y=x2(x∈R)的最小值是0,有f(0
)=0.题型分析举一反三题型一利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:分析:若函数为我们熟悉的函数,则直接给出单调区间,否则应先画出函数的草图,再结合图象“升降”给出单调区间.解:(1)函数y=3x-2的
单调区间为R,其在R上是增函数.(2)函数y=-的单调区间为(-∞,0),(0,+∞),其在(-∞,0)及(0,+∞)上均为增函数.解题方法(利用图象确定函数的单调区间)1.函数单调性的几何意义:在单调区间上,若函数的图象“上升”,则函数为增区间;若函数的图象“下降”,则函数为减区间.因此借
助于函数图象来求函数的单调区间是直观且有效的一种方法.除这种方法外,求单调区间时还可以使用定义法,也就是由增函数、减函数的定义求单调区间.求出单调区间后,若单调区间不唯一,中间可用“,”隔开.2.一次、二次函数及反比例函数的单调性:(1)一次函数y=kx+b(k≠
0)的单调性由系数k决定:当k>0时,该函数在R上是增函数;当k<0时,该函数在R上是减函数.(2)二次函数y=ax2+bx+c(a≠0)的单调性以对称轴x=-为分界线.由图象可知,函数的单调增区间为(-∞,1],[2,+∞);单调减区间为[1,2].
题型二利用函数的图象求函数的最值例2已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.由图象知,函数y=-|x-1|+2的最大值为2,没有最小值.所以其值域为(-∞,2].解题方法(用图象法求最值的3个步骤)(1)画出f(x)的图象;(2)利用图象写出该函数的最大值
和最小值.解:(1)函数f(x)的图象如图所示.(2)由图象可知f(x)的最小值为f(1)=1,无最大值.题型三证明函数的单调性例3求证:函数f(x)=x+在区间(0,1)内为减函数.证明:设x1,x2是区间(0,1)内的任意两个实
数,且x1<x2,∵0<x1<x2<1,∴x1x2>0,x1x2-1<0,x1-x2<0,∴f(x1)-f(x2)>0,即f(x1)>f(x2).故函数f(x)=x+在区间(0,1)内为减函数.解题方法(利用定义证明函数单调性的4个步骤)特别提醒
作差变形的常用技巧:(1)因式分解.当原函数是多项式函数时,作差后的变形通常进行因式分解.如f(x)=x2-2x-3=(x-3)(x+1).(2)通分.当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.如本例.(3)配方.当所得的差式是含有x1,x2的二次三项
式时,可以考虑配方,便于判断符号.(4)分子有理化.当原函数是根式函数时,作差后往往考虑分子有理化.[跟踪训练三]1.求证:函数f(x)=在(0,+∞)上是减函数,在(-∞,0)上是增函数.题型四利用函数的单调性求最值例4已知函数f(
x)=x+.(1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.解:(1)设x1,x2是区间[1,2]上的任意两个实数,且x1<x2,∵x1<x2,∴x1-x2<0.当1≤x1<x2≤2时,x1x2>0,1<x1x
2<4,即x1x2-4<0.∴f(x1)>f(x2),即f(x)在区间[1,2]上是减函数.(2)由(1)知f(x)的最小值为f(2),f(2)=2+=4;f(x)的最大值为f(1).∵f(1)=1+4=5,∴f(x)的最小值为4,最大值为5.解题方法(单调性与最值的关系)•
1.利用单调性求函数最值的一般步骤:•(1)判断函数的单调性;(2)利用单调性写出最值.•2.函数的最值与单调性的关系:•(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).•(2)若
函数f(x)在区间[a,b]上是增(减)函数,在区间(b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.•(3)若函数f(x)在区间[a,b]上的图象是一条连续不断的曲线,则函数f(x)在
区间[a,b]上一定有最值.•(4)求最值时一定要注意所给区间的开闭,若是开区间,则不一定有最大(小)值.[跟踪训练四]题型五函数单调性的应用例5已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)与f的大小.解题方法(抽象函数单调性求参)1.利用
函数的单调性可以比较函数值或自变量的大小.在利用函数的单调性解决比较函数值大小的问题时,要注意将对应的自变量转化到同一个单调区间上.2.利用函数的单调性解函数值的不等式就是利用函数在某个区间内的单调性,去掉对应关系
“f”,转化为自变量的不等式,此时一定要注意自变量的限制条件,以防出错.[跟踪训练五]1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.解题方法(解函数应用题的一般程序)(1)审题.弄清题意,分清条件和结论,理顺数量关系
.(2)建模.将文字语言转化成数学语言,用数学知识建立相应的数学模型.(3)求模.求解数学模型,得到数学结论.(4)还原.将用数学方法得到的结论还原为实际问题的意义.(5)反思回顾.对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.1.某租赁公司拥有汽车100辆,当每辆车的月租金
为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?
最大月收益是多少?[跟踪训练六]解:(1)当每辆车的月租金为3600元时,所以当x=4050,即每辆车的租金为4050元时,租赁公司的月收益最大,最大月收益是307050元.