苏科版数学九年级上册月考模拟试卷七(含答案)

DOC
  • 阅读 51 次
  • 下载 0 次
  • 页数 39 页
  • 大小 624.500 KB
  • 2022-11-20 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
苏科版数学九年级上册月考模拟试卷七(含答案)
可在后台配置第一页与第二页中间广告代码
苏科版数学九年级上册月考模拟试卷七(含答案)
可在后台配置第二页与第三页中间广告代码
苏科版数学九年级上册月考模拟试卷七(含答案)
可在后台配置第三页与第四页中间广告代码
苏科版数学九年级上册月考模拟试卷七(含答案)
苏科版数学九年级上册月考模拟试卷七(含答案)
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 39
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】苏科版数学九年级上册月考模拟试卷七(含答案).doc,共(39)页,624.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-27478.html

以下为本文档部分文字说明:

第1页(共39页)苏科版数学九年级上册月考模拟试卷一、选择题1.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,∠A,∠B都是锐角,则∠C的度数是()A.75°B.90°C.105°D.120°2.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为()A.4

0°B.50°C.55°D.60°3.下列函数中不是二次函数的有()A.y=x(x﹣1)B.y=﹣1C.y=﹣x2D.y=(x+4)2﹣x24.已知关于x的方程ax2+bx+c=5的一个根是2,且二次函

数y=ax2+bx+c的对称轴是直线x=2,则这条抛物线的顶点坐标为()A.(2,﹣3)B.(2,1)C.(2,5)D.(5,2)5.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为

4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()第2页(共39页)A.1个B.2个C.3个D.4个6.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=

2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π7.

如图,平面直角坐标系中,已知点B(2,1),过点B作BA⊥x轴,垂足为A,若抛物线y=x2+k与△OAB的边界总有两个公共点,则实数k的取值范围是()A.﹣2<k<0B.﹣2<k<C.﹣2<k<﹣1D.﹣2<k<8.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣3,0)、B(0,4)

的直线上,PQ切⊙O于点Q,则切线长PQ的最小值为()A.B.C.2.4D.3第3页(共39页)9.如图,二次函数y=﹣x2+x+3的图象与x轴交于点A、B,与y轴交于点C,点D在该抛物线上,且点D的横坐标为2,连接BC、BD,设∠OC

B=α,∠DBC=β,则cos(α﹣β)的值是()A.B.C.D.10.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个二、填空题11.在Rt△ABC中,∠C=90°,,BC=8,则△A

BC的面积为.12.如图,半径为2cm的圆O与地面相切于点B,圆周上一点A距地面高为(2+)cm,圆O沿地面BC方向滚动,当点A第一次接触地面时,圆O在地面上滚动的距离为.13.在Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,

r为半径作⊙C.若⊙C与斜边AB有两个公共点,则r的取值范围是.14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.15.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC是等径三角形,则等径角的度数为.第4

页(共39页)16.如图,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x1,0)、B(x2,0)两点,其中x1<0<x2,当x=x1+2时,y0(填“>”“=”或“<”号).17.如图,正方形ABCD的顶点A,B与正方形EF

GH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为.18.将二次函数y=x2﹣1的图象在x轴下方的部

分沿x轴翻折,图象的其余部分保持不变,这样就形成了新的图象,当直线y=x+m与新图象有4个公共点时,m的取值范围是.三、解答题19.计算:(1)+tan60°;(2)sin260°+cos245°﹣tan45°.第5页(共3

9页)20.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班(2)班进行了检测.如图表示从两班各随机抽

取的10名学生的得分情况:(1)利用图中提供的信息,补全下表:班级平均数(分)中位数(分)众数(分)(1)班24(2)班2421(2)若把24分以上(含24分)记为”优秀”,两班各50名学生,请估计两班各有多少名学生成绩优

秀;(3)观察图中数据分布情况,请通过计算说明哪个班的学生纠错的得分情况更稳定.21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.第6页

(共39页)22.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<

0时,求x的取值范围.23.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小

球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为

5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.第7页(共39页)

24.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过

多长时间桥洞会刚刚被灌满?25.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为

整数).(1)直接写出每天游客居住的房间数量y与x的函数关系式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿的情况,得到

以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?第8页(共39页)26.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D

、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.27.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3

﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对

应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=2有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.第9页(共39页)28.如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2

)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO=,PH=,由此发现,POPH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量

关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.第10页(共39页)参考答案一、选择题(本大题共10小题,每题3分,共计30分.)1.在△ABC中,若|sinA﹣|+(

﹣cosB)2=0,∠A,∠B都是锐角,则∠C的度数是()A.75°B.90°C.105°D.120°【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加和为0,这两个非负数的值都为0.”分别求出∠A

、∠B的值.然后用三角形内角和定理即可求出∠C的值.【解答】解:∵|sinA﹣|=0,(﹣cosB)2=0,∴sinA﹣=0,﹣cosB=0,∴sinA=,=cosB,∴∠A=45°,∠B=30°,∴∠C=180°﹣∠A﹣∠B=105°.故选C.2.如图,PA、PB分别切⊙O于点A

、B,若∠P=70°,则∠C的大小为()A.40°B.50°C.55°D.60°【考点】切线的性质.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等

于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,第11页(共39页)∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PB

O=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故选:C.3.下列函数中不是二次函数的有()A.y=x(x﹣1)B.y=﹣1C.y=﹣x2D.y=(x+4)2﹣x2【考点】二次函数的定义.【分析】依据二次函数的定义回答即可.【解答】解:

A、整理得y=x2﹣x,是二次函数,与要求不符;B、y=﹣1是二次函数,与要求不符;C、y=﹣x2是二次函数,与要求不符;D、整理得:y=8x+16是一次函数,与要求相符.故选:D.4.已知关于x的方程ax2+bx+c=5的一个根是2,且二次函数y=ax2+

bx+c的对称轴是直线x=2,则这条抛物线的顶点坐标为()A.(2,﹣3)B.(2,1)C.(2,5)D.(5,2)【考点】二次函数的性质;一元二次方程的解.【分析】由二次函数y=ax2+bx+c的对称轴是直线x=2,得出

顶点横坐标为2,代入函数解析式得出纵坐标ax2+bx+c=5,由此求得顶点坐标即可.【解答】解:∵二次函数y=ax2+bx+c的对称轴是直线x=2,方程ax2+bx+c=5的一第12页(共39页)个根是2

,∴当x=2时,y=ax2+bx+c=5,∴抛物线的顶点坐标是(2,5).故选:C.5.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元

二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个【考点】二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).【分析】①根据抛物线的顶点坐标确定二次

三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.【解答】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx

+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,第13页(共39页)故选:B.6.如图,在Rt△AOB中,∠AOB

=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π【考点】扇形面积的计

算;旋转的性质.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AO

B=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.第14页(共39页)7.如图

,平面直角坐标系中,已知点B(2,1),过点B作BA⊥x轴,垂足为A,若抛物线y=x2+k与△OAB的边界总有两个公共点,则实数k的取值范围是()A.﹣2<k<0B.﹣2<k<C.﹣2<k<﹣1D.﹣2<k<【考点】二次函数图象上点的坐

标特征.【分析】先根据抛物线解析式y=x2+k,求出抛物线与△AOB有一个公共点时的k值,然后根据抛物线的位置与开口方向判断k的取值范围即可.【解答】解:①由B(2,1)可得,OB的解析式为y=x,∵抛物线为y=x2+k,∴当抛物线与OB有两个交点时,一元二次方程x=x2

+k中,判别式△>0,即1﹣8k>0,解得k<,∴抛物线与△OAB有两个公共点时,k<;②∵B(2,1),BA⊥x轴,∴A(2,0),当抛物线y=x2+k经过点A时,0=2+k,即k=﹣2,第15页(共39页)∵抛物线开口向上,∴抛物线与△OAB有两个

公共点时,k>﹣2,综上,若抛物线y=x2+k与△OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.故选(B)8.如图,在平面直角坐标系中,⊙O的半径为1,点P在经过点A(﹣3,0)、B(0,4)的直线上,PQ切⊙O于点Q,则切

线长PQ的最小值为()A.B.C.2.4D.3【考点】切线的性质;坐标与图形性质.【分析】连接OP,OQ,过点O作OP′⊥AB,垂足为P′.由切线的性质可证明△OQP为直角三角形,故此当OP有最小值时,PQ由最小值,接下来由垂线段的性质可知当OP⊥AB时

,OP有最小值,接下来,在△AOB中依据面积法求得OP′的长,从而可求得PQ的最小值.【解答】解:如图所示:连接OP,OQ,过点O作OP′⊥AB,垂足为P′.第16页(共39页)∵A(﹣3,0)、B(0,4),∴OA=3,OB=4.由勾股定理可知AB=

5.∵OP′•AB=OA•OB,∴OP′=.∵PQ是圆O的切线,∴OQ⊥QO.∴PQ=.∴当OP有最小值时,PQ有最小值.∵由垂线段最短可知PO的最小值=OP′=,∴PQ的最小值==.故选:B.9.如图,二次函数y=﹣x2+x+3的图象与x轴交

于点A、B,与y轴交于点C,点D在该抛物线上,且点D的横坐标为2,连接BC、BD,设∠OCB=α,∠DBC=β,则cos(α﹣β)的值是()A.B.C.D.第17页(共39页)【考点】抛物线与x轴的交点.【分析】延长BD交y轴于P,根据三角形的外角的性质得

到∠OPB=α﹣β,解方程﹣x2+x+3=0,求出点A的坐标和点B的坐标,根据二次函数图象上点的坐标特征求出点D的坐标,运用待定系数法求出直线BD的解析式,求出OP的长,根据勾股定理求出PB的长,根据余弦的概念

解答即可.【解答】解:延长BD交y轴于P,∵∠OCB=α,∠DBC=β,∴∠OPB=α﹣β,﹣x2+x+3=0,解得,x1=﹣1.2,x2=4,∴点A的坐标为(﹣1.2,0),点B的坐标为(4,0),x=0时,y=3,∴点C的坐标为(0,3),

∵点D在该抛物线上,且点D的横坐标为2,∴点D的纵坐标为4,∴点D的坐标为(2,4),设直线BD的解析式为:y=kx+b,则,解得,,∴直线BD的解析式为:y=﹣2x+8,∴OP=8,PB==4,∴c

os(α﹣β)=cos∠OPB==,故选:D.第18页(共39页)10.已知直线y=﹣x+3与坐标轴分别交于点A,B,点P在抛物线y=﹣(x﹣)2+4上,能使△ABP为等腰三角形的点P的个数有()A.3个B.4个C.5个D.6个【考点】

二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两

交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的

坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3=0,第19页(共39页)解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等

边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物

线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.二、填空题(本大题共8小题,每题2分,共计16分.请把

答案直接填写在答题卷相应位置上.)11.在Rt△ABC中,∠C=90°,,BC=8,则△ABC的面积为24.【考点】解直角三角形.【分析】根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可.【解答】解:∵tanA==,∴AC=6,∴△ABC的面积为×6×

8=24.故答案为:24.第20页(共39页)12.如图,半径为2cm的圆O与地面相切于点B,圆周上一点A距地面高为(2+)cm,圆O沿地面BC方向滚动,当点A第一次接触地面时,圆O在地面上滚动的距离为cm.【考点】特殊角的三角函数值;弧长的计算.【分

析】作AD⊥BC于D,OE⊥AD于E,根据正弦的定义求出∠AOE的度数,根据弧长公式计算即可.【解答】解:作AD⊥BC于D,OE⊥AD于E,则AE=2+﹣2=,又OA=2,∴sin∠AOE==,∴∠AOE=60°,∴∠AOB=150°,则的

长为=,则圆O在地面上滚动的距离为cm,故答案为:cm.13.在Rt△ABC中,∠C=90°,AC=3,BC=4,以C为圆心,r为半径作⊙C.若⊙C与斜边AB有两个公共点,则r的取值范围是<r≤3.【考点】直线与圆

的位置关系.【分析】作CD⊥AB于D,由勾股定理求出AB,由三角形的面积求出CD,由AC>BC,可得以C为圆心,r=4为半径所作的圆与斜边AB只有一个公共点;若⊙C与斜边AB有两个公共点,即可得出r的取值范围.第21页(共39页)【解答】解:作C

D⊥AB于D,如图所示:∵∠C=90°,AC=3,BC=4,∴AB==5,∵△ABC的面积=AB•CD=AC•BC,∴CD==,即圆心C到AB的距离d=,∵AC<BC,∴以C为圆心,r=4为半径所作的圆与斜边AB只有一个公共点,∴若⊙C

与斜边AB有两个公共点,则r的取值范围是<r≤3.故答案为:<r≤3.14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2.【考点】三角形的外接圆与外心;圆周角定理.【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形

的性质和勾股定理可求得AC的长.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,第22页(共39页)∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.15

.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC是等径三角形,则等径角的度数为30°或150°.【考点】三角形的外接圆与外心.【分析】根据边长等于半径时,边长所对的圆心角为60°,根据圆周角与圆心角的关系和圆内接四边形的性质求

出等径角的度数.【解答】解:如图边AB与半径相等时,则∠AOB=60°,当等径角顶点为C时,∠C=∠AOB=30°,当等径角顶点为D时,∠C+∠D=180°,∠D=150°,故答案为:30°或150°.

16.如图,抛物线y=x2﹣2x+k(k<0)与x轴相交于A(x1,0)、B(x2,0)两点,其中x1<0<x2,当x=x1+2时,y<0(填“>”“=”或“<”号).第23页(共39页)【考点】二次函数的性质.【分析】根据抛物线方程求出对称轴方程x=1

,然后根据二次函数的图象的对称性知x1与对称轴x=1距离大于1,所以当x=x1+2时,抛物线图象在x轴下方,即y<0.【解答】解:∵抛物线y=x2﹣2x+k(k<0)的对称轴方程是x=1,又∵x1<0,∴x1与对称轴x=1距离大于1,∴x1+2<x2,∴当x=x1+2时,抛物线图象在x

轴下方,即y<0.故答案是:<.17.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为2﹣2.【

考点】二次函数的性质.【分析】根据题意得出抛物线解析式,进而表示出G点坐标,再利用2OF=FG,进而求出即可.【解答】解:∵正方形ABCD边长为4,∴顶点坐标为:(0,4),B(2,0),设抛物线解析式为:y=ax2

+4,第24页(共39页)将B点代入得,0=4a+4,解得a=﹣1,∴抛物线解析式为:y=﹣x2+4设G点坐标为:(m,﹣m2+4),则2m=﹣m2+4,整理的:m2+2m﹣4=0,解得:m1=﹣1+,a2=﹣1﹣(不合题意舍去),∴正方形EFG

H的边长FG=2m=2﹣2.故答案为:2﹣2.18.将二次函数y=x2﹣1的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,这样就形成了新的图象,当直线y=x+m与新图象有4个公共点时,m的取值范围是1<m<.

【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2﹣1的顶点坐标为(0,﹣1)和抛物线y=x2﹣1与x轴的交点为(﹣1,0),(1,0),画出抛物线,然后把抛物线y=x2﹣1图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣x2+1(﹣1≤x≤1),有图象可

得当直线y=x+m过点A时,直线y=x+m与该新图象恰好有三个公共点,易得对应的m的值为1;当直线y=x+m与抛物线y=﹣x2+1(﹣1≤x≤1)相切时,直线y=x+m与该新图象恰好有三个公共点,即﹣x2+1=x+m有相等的实数解,利用根的

判别式的意义可求出此时m的值,进而得到直线y=x+m与新图象有4个公共点时,m的取值范围.【解答】解:∵y=x2﹣1,∴抛物线y=x2﹣1的顶点坐标为(0,﹣1),当y=0时,x2﹣1=0,解得x1=﹣1,x2=1,则抛物线y=x2﹣1与x轴的交点为(﹣1,0),(1,0),把抛物

线y=x2﹣1图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣x2+1(﹣1≤x≤1),如图,第25页(共39页)把直线y=x向上平移,当平移后的直线y=x+m过点A时,直线y=x+m与该新图象恰好有三个公共点,所以﹣1+m=0,解得m=1;当直线y

=x+m与抛物线y=﹣x2+1(﹣1≤x≤1)相切时,直线y=x+m与该新图象恰好有三个公共点,即﹣x2+1=x+m有相等的实数解,整理得x2+x+m﹣1=0,△=12﹣4(m﹣1)=0,解得m=,所以当直线y=x+m与新图象有4个公共点时,m的取值范围是1<m<

.故答案为1<m<.三、解答题(本大题共10小题,共计84分.解答需写出必要的文字说明或演算步骤.)19.计算:(1)+tan60°;(2)sin260°+cos245°﹣tan45°.【考点】特殊角

的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:(1)原式=+=;(2)原式=()2+()2﹣=﹣.第26页(共39页)20.某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集

整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况:(1)利用图中提供的信息,补全下表:班级平均数

(分)中位数(分)众数(分)(1)班242424(2)班242421(2)若把24分以上(含24分)记为”优秀”,两班各50名学生,请估计两班各有多少名学生成绩优秀;(3)观察图中数据分布情况,请通过计算说明哪个班的学生纠错的得分情况更

稳定.【考点】众数;用样本估计总体;中位数.【分析】(1)将图(1)中数据相加再除以10,即可到样本平均数;找到图(2)中出现次数最多的数和处于中间位置的数,即为众数和中位数;(2)找到样本中24分和24分人数所占的百分数,用样本平均数估计总体平均数;(3)计算出两个班的方差,方差越小越稳定.

【解答】解:24×10﹣(24+21+30+21+27+27+21+24+30)=240﹣225=15(1)(1)班平均分:(24+21+27+24+21+27+21+24+27+24)=24;第27页(共39页)有4名学生24分,最多,故众数为24分;处于中间位置的数为2

4和24,故中位数为24,出现次数最多的数为24,故众数为24.班级平均数(分)中位数(分)众数(分)(1)班2424(2)班24(2)(1)班优秀率为,三(1)班成绩优秀的学生有50×=35名;(2)班优秀

率为,三(2)班成绩优秀的学生有50×=30名;(3)S12=[(21﹣24)2×3+(24﹣24)2×4+(27﹣24)2×3]=×(27+27)=5.4;S22=[(21﹣24)2×3+(24﹣24)2×2+(27﹣24)2×2+(30﹣24)2×2+(1

5﹣24)2]=×198=19.8;S12<S22,初三(1)班成绩比较整齐.21.如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.(1)求证:∠1=∠BAD;(2)求证:BE是⊙O的切线.第2

8页(共39页)【考点】三角形的外接圆与外心;圆周角定理;切线的判定.【分析】(1)根据等腰三角形的性质和圆周角定理得出即可;(2)连接BO,求出OB∥DE,推出EB⊥OB,根据切线的判定得出即可;【

解答】证明:(1)∵BD=BA,∴∠BDA=∠BAD,∵∠1=∠BDA,∴∠1=∠BAD;(2)连接BO,∵∠ABC=90°,又∵∠BAD+∠BCD=180°,∴∠BCO+∠BCD=180°,∵OB=OC,

∴∠BCO=∠CBO,∴∠CBO+∠BCD=180°,∴OB∥DE,∵BE⊥DE,∴EB⊥OB,∵OB是⊙O的半径,∴BE是⊙O的切线.第29页(共39页)22.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶

点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据

抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.【解答】解:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2

,0)代入y=x2+bx﹣6得:b=﹣1,∴抛物线的解析式为y=x2﹣x﹣6.∴y=(x﹣)2﹣.∴抛物线的顶点坐标D(,﹣).(2)二次函数的图形沿x轴向左平移个单位长度得:y=(x+2)2﹣.令y=0得:(x+2)2

﹣=0,解得:x1=,x2=﹣.∵a>0,∴当y<0时,x的取值范围是﹣<x<.23.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都第30页(共39页)能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完

全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得

的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.【考点】列表法与树状图法.【分析】(1)首先

根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.【解答】解:(1)列表得:123412345234563456745678(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、

6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.24.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2

)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚第31页(共39页)刚被灌满?【考点】垂径定理的应用;勾股定理.【分析】(1)在直角三角形EOD中利用勾股定理求得ED的长,2ED等于弦CD的长;(2)延长OE交圆O于点F求得EF=OF﹣OE=13﹣5=8m,然后利用,所以经过2

小时桥洞会刚刚被灌满.【解答】解:(1)∵直径AB=26m,∴OD=,∵OE⊥CD,∴,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(

2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF﹣OE=13﹣5=8m,∴,即经过2小时桥洞会刚刚被灌满.第32页(共39页)25.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有

一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数关系式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利

润是多少?(3)某日,宾馆了解当天的住宿的情况,得到以下信息:①当日所获利润不低于5000元,②宾馆为游客居住的房间共支出费用没有超过600元,③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?【考点】二次函数的应用;一元一次不等式组的应用.【

分析】(1)根据每天游客居住的房间数量等于50﹣减少的房间数即可解决问题.(2)构建二次函数,利用二次函数的性质解决问题.(3)根据条件列出不等式组即可解决问题.【解答】解:(1)根据题意,得:y=50﹣x,(0≤x≤50,且x为整数);(2)W=(50﹣x)=﹣10x2+400x+5000=﹣

10(x﹣20)2+9000,∵a=﹣10<0∴当x=20时,W取得最大值,W最大值=9000元,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元;(3)由解得20≤x≤40∵房间数y=50﹣x,又∵﹣1<0,∴当x=40时,y的值最小,这天宾馆

入住的游客人数最少,最少人数为2y=2(﹣x+50)=20(人).第33页(共39页)26.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.【考点

】圆周角定理;等腰三角形的判定与性质;勾股定理.【分析】(1)连结AE,如图,根据圆周角定理,由=得∠DAE=∠BAE,由AB为直径得∠AEB=90°,根据等腰三角形的判定方法即可得△ABC为等腰三角

形;(2)由等腰三角形的性质得BE=CE=BC=6,再在Rt△ABE中利用勾股定理计算出AE=8,接着由AB为直径得到∠ADB=90°,则可利用面积法计算出BD=,然后在Rt△ABD中利用勾股定理计算出AD=,再根据正弦的定义求解.【解答】解:(1

)△ABC为等腰三角形.理由如下:连结AE,如图,∵=,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90°,∴AE⊥BC,∴△ABC为等腰三角形;(2)∵△ABC为等腰三角形,AE⊥BC,∴

BE=CE=BC=×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE==8,∵AB为直径,第34页(共39页)∴∠ADB=90°,∴AE•BC=BD•AC,∴BD==,在Rt△ABD中,∵AB=10,BD=,∴AD==,∴sin∠ABD===.27.某班“

数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=0.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出

了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②方程x2﹣2|x|=2有2个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是﹣1

<a<0.第35页(共39页)【考点】二次函数的图象;根的判别式.【分析】(1)把x=﹣2代入函数解释式即可得m的值;(2)描点、连线即可得到函数的图象;(3)根据函数图象得到函数y=x2﹣2|x|的图象关于y轴

对称;当x>1时,y随x的增大而增大;(4)①根据函数图象与x轴的交点个数,即可得到结论;②如图,根据y=x2﹣2|x|的图象与直线y=2的交点个数,即可得到结论;③根据函数的图象即可得到a的取值范围是﹣1<a<0.【解答】解

:(1)把x=﹣2代入y=x2﹣2|x|得y=0,即m=0,故答案为:0;(2)如图所示;(3)由函数图象知:①函数y=x2﹣2|x|的图象关于y轴对称;②当x>1时,y随x的增大而增大;(4)①由函数图象知:函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根

;②如图,∵y=x2﹣2|x|的图象与直线y=2有两个交点,∴x2﹣2|x|=2有2个实数根;③由函数图象知:∵关于x的方程x2﹣2|x|=a有4个实数根,∴a的取值范围是﹣1<a<0,故答案为:3,3,2,﹣1<a<0.第36页(共39页)28.如图1,在平面直角

坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算

:PO=5,PH=5,由此发现,PO=PH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,

求出P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①求出PO、PH即可解决问题.②结论:PO=PH.设点P坐标(m,﹣m2+1),利用两点之间距离公式求出PH、PO即可解决问题.(

3)首先判断PH与BC,PO与AC是对应边,设点P(m,﹣m2+1),由=列出方程即可解决问题.第37页(共39页)【解答】(1)解:∵抛物线y=ax2+1经过点A(4,﹣3),∴﹣3=16a+1,∴a=﹣,∴抛物线解析式为y=﹣x2+1,顶点B(0,1).(2)①当P点运动到A点处时,∵P

O=5,PH=5,∴PO=PH,故答案分别为5,5,=.②结论:PO=PH.理由:设点P坐标(m,﹣m2+1),∵PH=2﹣(﹣m2+1)=m2+1PO==m2+1,∴PO=PH.(3)∵BC==,AC==,AB==4∴BC=AC,∵PO=PH,又∵以P,O,H为顶点的三角形与△ABC相似,∴

PH与BC,PO与AC是对应边,∴=,设点P(m,﹣m2+1),∴=,解得m=±1,∴点P坐标(1,)或(﹣1,).第38页(共39页)第39页(共39页)2017年2月25日

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 111
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?