苏科版数学八年级上册期末模拟试卷07(含答案)

DOC
  • 阅读 57 次
  • 下载 0 次
  • 页数 25 页
  • 大小 482.000 KB
  • 2022-11-20 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
苏科版数学八年级上册期末模拟试卷07(含答案)
可在后台配置第一页与第二页中间广告代码
苏科版数学八年级上册期末模拟试卷07(含答案)
可在后台配置第二页与第三页中间广告代码
苏科版数学八年级上册期末模拟试卷07(含答案)
可在后台配置第三页与第四页中间广告代码
苏科版数学八年级上册期末模拟试卷07(含答案)
苏科版数学八年级上册期末模拟试卷07(含答案)
还剩10页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 25
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】苏科版数学八年级上册期末模拟试卷07(含答案).doc,共(25)页,482.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-27359.html

以下为本文档部分文字说明:

苏科版数学八年级上册期末模拟试卷一、选择题1.下列图形中,不是轴对称图形的是()A.B.C.D.2.小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A.48B.48.0C.47D.47.93.下列几组数据能作为直角三角形的三边长的是()A.2,3,

4B.4,5,6C.4,6,9D.5,12,134.下列说法正确的是()A.的立方根是B.﹣49的平方根是±7C.11的算术平方根是D.(﹣1)2的立方根是﹣15.若点M(m,n)在一次函数y=﹣5x+b的图象上,且5m+n<3,则b的取值范围为()A.b>3B.b>﹣3C

.b<3D.b<﹣36.无论x取什么值,下列分式总有意义的是()A.B.C.D.7.如图,在△ABC中,AC=AD=BD,∠B=35°,则∠CAD的度数为()A.70°B.55°C.40°D.35°8.若关于x的分式方程有增根,则m的

值为()A.﹣2B.0C.1D.29.一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如下表:x…0123…y1…21…x…0123…y2…﹣3﹣113…则关于x的不等式kx+b>mx+n的解集是()A

.x>2B.x<2C.x>1D.x<110.如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于()A.B.C.D.2二、填空题11.|2﹣|=.12.

当x=时,分式的值为0.13.在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值.14.等腰三角形的两边长为3和7,则第三边长为.15.已知点P(2m﹣1,﹣m+3)关于原点的对称点在第三象限,则m的取值范围是.16.如图,点P是∠AOB的角平分线上一点,过点

P作PC∥OA交OB于点C,过点P作PD⊥OA于点D,若∠AOB=60°,OC=4,则PD=.17.在平面直角坐标系中,直线l1∥l2,直线l1对应的函数表达式为,直线l2分别与x轴、y轴交于点A,B

,OA=4,则OB=.18.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为.三、解答题19.计算:.20.解方程:.21.先化简,再求值:,其中x=﹣

4.22.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,

1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.23.如图,已知一次函数y1=x+1的图象与y轴交于点A,一次函数y2=kx+b的图象经过点B(0,3),且分别与x轴及y1=x+1的图象

交于点C,D,点D的横坐标为.(1)求k,b的值;(2)当x时,y2>0;(3)若在一次函数y1=x+1的图象上有一点,将点E向右平移2个单位后,得对应点E',判断点E'是否在一次函数y2=kx+b的图象上.24.

某校美术社团为了练习素描,准备购进一批资料.他们第一次用120元买了若干本资料,第二次用192元在同一家商店买同样的资料,这次商家给了每本八折的优惠,结果比上次多买了10本.求这种资料原价每本多少元?25.如图,直线l与x轴交于点

A,与一次函数y=﹣x+5的图象交于点B.点P(a,1)是一次函数y=﹣x+5图象上的一点,过点P作PD∥x轴,交y轴于点C,交直线l于点D,过点B作BE⊥PD,垂足为E,且∠ABE=∠PBE,PE=6.(1)求证:△BDE≌△BPE;(2)求直线l所对应

的函数表达式.26.一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x(h),货车的路程为y1(km),小轿车的路程为y2(km),图中的线段OA与折线OBCD分别表示y1,y

2与x之间的函数关系.(1)甲乙两地相距km,m=;(2)求线段CD所在直线的函数表达式;(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?27.(如图,在△ABC中,AB=AC,∠BAC=45°,AD⊥BC于点D

,BE⊥AC于点E,且与AD交于点F.G是边AB的中点,连接EG交AD于点H.(1)求证:△AEF≌△BEC;(2)求证:CD=AF;(3)若BD=2,求AH的长.[来源:学*科*网]28.一次函数y=﹣2x+2的图象与x轴、y轴分别交于点A,B.在y轴左侧有一点P(﹣

1,a).(1)如图1,以线段AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,求点C的坐标;(2)当a=时,求△ABP的面积;(3)当a=﹣2时,点Q是直线y=﹣2x+2上一点,且△POQ的面积为5,求点Q的坐标.参考

答案与试题解析一、选择题1.下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形

,故本选项不符合题意.故选:A.2.小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A.48B.48.0C.47D.47.9【解答】解:47.95精确到0.1的近似值为48.0.故选:B.3.下列几组数据

能作为直角三角形的三边长的是()A.2,3,4B.4,5,6C.4,6,9D.5,12,13【解答】解:A、22+32≠42,不是勾股数;B、42+52≠62,不是勾股数;C、42+62≠92,不是勾股数;D、52+122=132,是勾股数,

故选:D.4.下列说法正确的是()A.的立方根是B.﹣49的平方根是±7C.11的算术平方根是D.(﹣1)2的立方根是﹣1【解答】解:A、的立方根是:,故此选项错误;B、﹣49没有平方根,故此选项错误;C、11的算术平方根是,正确;D

、(﹣1)2=1的立方根是1,故此选项错误;故选:C.5.若点M(m,n)在一次函数y=﹣5x+b的图象上,且5m+n<3,则b的取值范围为()A.b>3B.b>﹣3C.b<3D.b<﹣3【解答】解:∵点M(m,n)在一次函数y=﹣5x+b

的图象上,∴﹣5m+b=n.∵5m+n<3,∴5m﹣5m+b<3,即b<3.故选:C.6.无论x取什么值,下列分式总有意义的是()A.B.C.D.【解答】解:A、,x≠0,故此选项错误;B、中,x2+1始终不等于0,故此选项正确;C、中,x﹣1≠0,则x≠1时,符合题意,故此选项错误;D、,x

≠0,故此选项错误;故选:B.7.如图,在△ABC中,AC=AD=BD,∠B=35°,则∠CAD的度数为()A.70°B.55°C.40°D.35°【解答】解:∵AD=BD,∴∠BAD=∠B=35°,∴

∠ADC=∠B+∠BAD=35°+35°=70°,∵AD=AC,∴∠C=∠ADC=70°,∴∠CAD=180°﹣∠ADC﹣∠C=180°﹣70°﹣70°=40°,故选:C.8.若关于x的分式方程有增根,则m的值为()A.﹣2B.0C.1D.2【解答】解:方程两边都乘以x﹣2,得:x+m﹣2m=3(

x﹣2),∵方程有增根,∴x=2,将x=2代入整式方程,得:2+m﹣2m=0,解得:m=2,故选:D.9.一次函数y1=kx+b与y2=mx+n的部分自变量和对应函数值如下表:x…0123…y1…21…x…0123…y2…﹣3﹣113…则关于x的

不等式kx+b>mx+n的解集是()A.x>2B.x<2C.x>1D.x<1【解答】解:根据表可得y1=kx+b中y随x的增大而减小;y2=mx+n中y随x的增大而增大.且两个函数的交点坐标是(2,1).则当x<2时,k

x+b>mx+n.故选:B.10.如图,△ABC中,∠ACB=90°,BC=3,AC=4,点D是AB的中点,将△ACD沿CD翻折得到△ECD,连接AE,BE,则线段BE的长等于()A.B.C.D.2【解答】解:如图延CD交AE与点H,作AF⊥AB,垂足为F.∵在Rt△ABC中,AC=4,BC=3,

∴AB=5.∵D为AB的中点,∴AD=BD=DC.∵AC•BC=AB•CF,∴×3×4=×5×CF,解得CF=.由翻折的性质可知AC=CE,AD=DE,∴CH⊥AE,AH=HE.∵DC=DB,BD•CF=DC•HE,∴HE=CF=.∴AE=.∵AD=DE=DB

,∴△ABE为直角三角形.∴BE===.故选:A.二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应的位置上.11.|2﹣|=2﹣.【解答】解:|2﹣|=2﹣.故答案为:2﹣.12.当x=﹣时,分式的

值为0.【解答】解:∵分式的值为0,∴2x+1=0且6x﹣5≠0,解得:x=.故答案为:﹣.13.在一次函数y=(k﹣3)x+2中,y随x的增大而减小,则k的取值<3.【解答】解:∵一次函数y=(k﹣3)x+2中y随x的增大而减小,∴k﹣3<0,解得,k<3;故答案是:.1

4.等腰三角形的两边长为3和7,则第三边长为7.【解答】解:当3为底时,其它两边都为7,3、7、7可以构成三角形,当3为腰时,其它两边为3和7,∵3+3=6<7,所以不能构成三角形,故舍去,故答案为:7.15.已知点P(2m﹣1,﹣m+3)关于原点的对称点在第三象限,则m的取

值范围是<m<3.【解答】解:∵点P(2m﹣1,﹣m+3)关于原点的对称点在第三象限,∴点P(2m﹣1,﹣m+3)在第一象限,∴,解得:<m<3,故答案为:<m<3.16.如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交OB于点

C,过点P作PD⊥OA于点D,若∠AOB=60°,OC=4,则PD=2.【解答】解:∵∠AOB=60°,点P是∠AOB的角平分线上一点,∴∠POD=∠POC=30°,又∵PC∥OA,∴∠PCB=60°,∴∠POC=30°,∵∠PCB=180°﹣∠60°=120°,∴∠POC=∠OPC,

∴△OCP为等腰三角形,∵OC=4,∠PCE=60°,[来源:Zxxk.Com]∴PC=4,CE=2,PE==2,可求OP=4,又∵PD=OP,∴PD=2.故答案为2.17.在平面直角坐标系中,直线l1∥l2,直线l1对应的函数表达式为,直线l2分别与x轴、

y轴交于点A,B,OA=4,则OB=2.【解答】解:∵直线l1∥l2,直线l1对应的函数表达式为,∴可以假设直线l2的解析式为y=x+b,∵OA=4,∴A(4,0)代入y=x+b,得到b=﹣2,∴B(0,﹣2),

∴OB=2,故答案为218.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为8.【解答】解:连接AD,∵△ABC

是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CP+PD的最小值,∴△CDP的周长最短=(CP+PD)+CD=AD+B

C=6+×4=6+2=8.故答案为:8三、解答题本大题共10小题,共76分.把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:.【解答】解:原式=1﹣3﹣2=﹣4.20.解方程:.【解

答】解:去分母得:12x﹣21+6x﹣18=2x+9,移项合并得:16x=48,[来源:Zxxk.Com]解得:x=3,经检验x=3是增根,分式方程无解.21.(6分)先化简,再求值:,其中x=﹣4.【解答】解:原式=1﹣•=1﹣=当x=﹣4时,原式==

﹣.22.(8分)在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2

,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.【解答】解:(1)如图所示:(2)如图所示:△A'B'C'即为所求:C'的坐标为(﹣5,5);(3)∵AB2=1+4=5,AC2=4+16=20,BC2=9+16=25,∴AB2

+AC2=BC2,∴△ABC是直角三角形.23.(7分)如图,已知一次函数y1=x+1的图象与y轴交于点A,一次函数y2=kx+b的图象经过点B(0,3),且分别与x轴及y1=x+1的图象交于点C,D,点D的横坐标为.(1)求k,b的值;(2)当x<时,y2>0;(3)若在一次

函数y1=x+1的图象上有一点,将点E向右平移2个单位后,得对应点E',判断点E'是否在一次函数y2=kx+b的图象上.【解答】解:(1)当x=时,y=,∴D(,),由B(0,3),D(,)可得,[来源:学科网]解得.(2)∵y2=﹣2x+3,∴C(,

0),观察图象可知当x<时,y2<0.(3)由题意n=时,E′(,),当x=时,y2=0≠,∴点E′不在一次函数y2=kx+b的图象上24.(7分)某校美术社团为了练习素描,准备购进一批资料.他们第一次用120元买了若干本

资料,第二次用192元在同一家商店买同样的资料,这次商家给了每本八折的优惠,结果比上次多买了10本.求这种资料原价每本多少元?【解答】解:设这种资料的原价是每本x元,根据题意,得:﹣=10,解得:x=12,经检验:x=12是原分式方程的解,答

:这种资料原价每本12元.25.(8分)如图,直线l与x轴交于点A,与一次函数y=﹣x+5的图象交于点B.点P(a,1)是一次函数y=﹣x+5图象上的一点,过点P作PD∥x轴,交y轴于点C,交直线l于点D,过点B作BE⊥PD,

垂足为E,且∠ABE=∠PBE,PE=6.(1)求证:△BDE≌△BPE;(2)求直线l所对应的函数表达式.【解答】解:(1)∵BE⊥PD,∴∠BED=∠BEP=90°,∵∠DBE=∠PBE,BE=BE,'∴△BDE≌△BPE;(2)把点P(a,1)代入y=﹣x+5

中,1=﹣a+5,解得a=8.∴PC=8,∵PE=6,∴CE=2,∴B(2,4),∵△BDE≌△BPE,∴DE=PE=6,∴DC=4,D(﹣4,1),设直线l的解析式为y=kx+b,把B(2,4),D(﹣4,10代入得到

,解得,∴直线l的解析式为y=x+326.(10分)一辆货车和一辆小轿车同时从甲地出发,货车匀速行驶至乙地,小轿车中途停车休整2h后提速行驶至乙地.设行驶时间为x(h),货车的路程为y1(km),小轿车的路程为

y2(km),图中的线段OA与折线OBCD分别表示y1,y2与x之间的函数关系.(1)甲乙两地相距420km,m=5;(2)求线段CD所在直线的函数表达式;(3)小轿车停车休整后还要提速行驶多少小时,与货车之间相距20km?【解答】解:(1)观察图象可知

:甲乙两地相距420km,m=5,故答案为:420,5;(2)设直线CD的解析式为y=kx+b,把C(5,270),D(6.5,420)代入得到,解得,∴直线CD的解析式为y=100x﹣230.(3)设线段OA所在的直线的解析

式为y=k′x,把点A(7,420)代入得到k′=60,∴y=60x,由题意:60x﹣(100x﹣230)=20,解得x=,x﹣5=,或(100x﹣230)﹣60x=20,解得x=,x﹣5=,答:小轿车停车休整后还要提速行驶或小时,与货车之间相距20km.27.(10分)如图,在△AB

C中,AB=AC,∠BAC=45°,AD⊥BC于点D,BE⊥AC于点E,且与AD交于点F.G是边AB的中点,连接EG交AD于点H.(1)求证:△AEF≌△BEC;(2)求证:CD=AF;(3)若BD=2,求AH的长.【解答】证明:(1)∵BE⊥AC,∴∠ABE+∠BAE=90°,∵∠ABE

=45°,∴∠BAE=∠ABE=45°,∴AE=BE,在△BEC和△AEF中,∵,∴△BEC≌△AEF(ASA);(2)∵△BEC≌△AEF,∴BC=AF,∵AB=AC,AD⊥BC,∴BD=DC=BC,∴AF=2BD.即CD=AF;(3)连接BH,∵AB=AC,AD⊥BC,∴∠5==22

.5°,∵AE=BE,G是边AB的中点,∴EG垂直平分AB,∴AH=BH,∴∠5=∠6=22.5°,∴∠BHD=22.5°+22.5°=45°,∵∠BDH=90°,∴∠HBD=45°,∴BD=DH=2,在Rt△BDH中,由勾股定理得;BH=2,∴AH=2.28.(10

分)一次函数y=﹣2x+2的图象与x轴、y轴分别交于点A,B.在y轴左侧有一点P(﹣1,a).(1)如图1,以线段AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,求点C的坐标;(2)当a=时,求

△ABP的面积;(3)当a=﹣2时,点Q是直线y=﹣2x+2上一点,且△POQ的面积为5,求点Q的坐标.【解答】解:(1)如图1,过点C作CD⊥x轴于D,令x=0,得y=2,令y=0,得x=1,∴A(1,0),B(0,2),∴OA=1,OB=2

,∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAD=90°,∵∠ACD+∠CAD=90°,∴∠BAO=∠ACD,∵∠BOA=∠ADC=90°,∴△ABO≌△CAD,∴AD=BO=2,

CD=AO=1,∴OD=3,∴C(3,1);(2)连接PO,如图2,S△ABP=S△BOP﹣S△AOP=×2×1+×1×2﹣×1×=,(3)设点Q(m,﹣2m+2),①当点Q在第二象限时,如图3,作PM⊥y轴于M,QN⊥y轴于N,∴QN=﹣

m,ON=﹣2M+2,PM=1,OM=2,∵S△POQ=S梯形PMNQ﹣S△ANQ﹣S△AMP=(﹣m+1)(﹣2m+2+2)﹣(﹣m)(﹣2m+2)﹣×1×2=5,∴m=﹣2,∴﹣2m+2=6,∴点Q(﹣2,6),符合题意;②点Q在第一象限时,如图4,作PM⊥y轴,QN⊥x轴

于N,PM交PM于点M,∴ON=m,QN=﹣2m+2,PM=m+1,MN=2,∴QN=﹣2m+4,∴S△POQ=S△OQN+S梯形ONMP﹣S△QMP=m(﹣2m+2)+(m+m+1)×2﹣(m+1)(﹣2m+4)=5,∴

m=3,∴﹣2m+2=﹣4,∴Q(3,﹣4),但不在第一象限,不符合题意,舍去;③当点Q在第四象限时,如图5,作PM⊥x轴于M,QN⊥x轴于N,∴ON=m,QN=2m﹣2,PM=2,OM=1,MN=m+1,∴S△POQ=S梯形PMNQ﹣S△PMO﹣S△

QNO=(2+2m﹣2)(m+1)﹣×1×2﹣m(2m﹣2)=5,∴m=3,∴﹣2m+2=﹣4,∴Q(3,﹣4),符合题意,即:点Q的坐标为(﹣2,6)或(3,﹣4).

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?