中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案

DOC
  • 阅读 50 次
  • 下载 0 次
  • 页数 19 页
  • 大小 524.500 KB
  • 2022-11-19 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案
可在后台配置第一页与第二页中间广告代码
中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案
可在后台配置第二页与第三页中间广告代码
中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案
可在后台配置第三页与第四页中间广告代码
中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案
中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 19
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】中考数学冲刺压轴题《因动点产生的相似三角形问题》含答案.doc,共(19)页,524.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-24962.html

以下为本文档部分文字说明:

因动点产生的相似三角形问题例1如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y=x+2平行交y轴于点C

,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1例2如图1,Rt△ABC中,∠AC

B=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若A

Q⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1图2例3如图1,已知抛物线211(1)444byxbx(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.(1)点B的坐标为______,点C的坐标为____

______(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)

请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.图1例4如图1,已知抛物线的方程C1:1(2)()yxxmm

(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限

内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图1例5如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上

下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2)

.用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度

沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1图2例6如图1,抛物线经过点

A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若

不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1因动点产生的相似三角形问题答案例1如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过

点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.图1

动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD

相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2,m)代入y=x+2,得m=4.所以点A的坐标为(2,4).将点A(2,4)代入kyx,得k=8.(2)将点B(n,2),代入8yx,得n=4.所以点B的坐标为(4,2).设直线

BC为y=x+b,代入点B(4,2),得b=-2.所以点C的坐标为(0,-2).由A(2,4)、B(4,2)、C(0,-2),可知A、B两点间的水平距离和竖直距离都是2,B、图2C两点间的水平距离和竖直距离都是4.所以AB=22,BC=42,∠ABC=90°.所以S△

ABC=12BABC=122422=8.(3)由A(2,4)、D(0,2)、C(0,-2),得AD=22,AC=210.由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE.所

以△ACE与△ACD相似,分两种情况:①如图3,当CEADCAAC时,CE=AD=22.此时△ACD≌△CAE,相似比为1.②如图4,当CEACCAAD时,21021022CE.解得CE=102.此时C、E两点间的水平距离和竖直距离都是10,所以E(10

,8).图3图4考点伸展第(2)题我们在计算△ABC的面积时,恰好△ABC是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5例2

如图1,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△AB

C相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,

若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动

点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ与△ABC相似,存在两种情况:①如果BPBABQBC,那么510848tt.解得t=1.②如

果BPBCBQBA,那么588410tt.解得3241t.图3图4(2)作PD⊥BC,垂足为D.在Rt△BPD中,BP=5t,cosB=45,所以BD=BPcosB=4t,PD=3t.当AQ⊥CP时,△ACQ∽△CDP

.所以ACCDQCPD,即68443ttt.解得78t.图5图6(3)如图4,过PQ的中点H作BC的垂线,垂足为F,交AB于E.由于H是PQ的中点,HF//PD,所以F是QD的中点.又因为BD=CQ=4t,所以BF=CF.因此F是BC的中点,E是AB的中点.所以PQ的中点H在△AB

C的中位线EF上.考点伸展本题情景下,如果以PQ为直径的⊙H与△ABC的边相切,求t的值.如图7,当⊙H与AB相切时,QP⊥AB,就是BPBCBQBA,3241t.如图8,当⊙H与BC相切时,PQ⊥BC,就是BPBABQBC,t=1.如图9,当⊙H与AC相切时,直径

2222(3)(88)PQPDQDtt,半径等于FC=4.所以22(3)(88)8tt.解得12873t,或t=0(如图10,但是与已知0<t<2矛盾).图7图8图9图10例3如图1,已知抛物线211(1)444byxbx(b是实数且b>

2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C.(1)点B的坐标为______,点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在

,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.图1动感

体验请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠

OQA=∠B的时刻,也存在∠OQ′A=∠B的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等.2.联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示.3.第(3)题要探究三个三角形两两相似,第一直

觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上.满分解答(1)B的坐标为(b,0),点C的坐标为(0,4b).(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC.因此PD=PE.设点P的坐标为(x,x).如图3,联结OP

.所以S四边形PCOB=S△PCO+S△PBO=1152428bxbxbx=2b.解得165x.所以点P的坐标为(1616,55).图2图3(3)由2111(1)(1)()4444byxbxxxb

,得A(1,0),OA=1.①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA.当BAQAQAOA,即2QABAOA时,△BQA∽△QOA.所以2()14bb.解得843b.所以符合题意

的点Q为(1,23).②如图5,以OC为直径的圆与直线x=1交于点Q,那么∠OQC=90°。因此△OCQ∽△QOA.当BAQAQAOA时,△BQA∽△QOA.此时∠OQB=90°.所以C、Q、B三点共线.因

此BOQACOOA,即14bQAb.解得4QA.此时Q(1,4).图4图5考点伸展第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而∠QOA与∠QOC是互余的,那么我们自然想到三个三角形都是直角三

角形的情况.这样,先根据△QOA与△QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置.如图中,圆与直线x=1的另一个交点会不会是符合题意的点Q呢?如果符合题意的话,那么点B的位置距离点

A很近,这与OB=4OC矛盾.例4如图1,已知抛物线的方程C1:1(2)()yxxmm(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下

,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图1动感体验请打

开几何画板文件名“12黄冈25”,拖动点C在x轴正半轴上运动,观察左图,可以体验到,EC与BF保持平行,但是∠BFC在无限远处也不等于45°.观察右图,可以体验到,∠CBF保持45°,存在∠BFC=∠BCE的时刻.思路点拨1.第(3)题是典型的“牛喝水”问题,当H落在

线段EC上时,BH+EH最小.2.第(4)题的解题策略是:先分两种情况画直线BF,作∠CBF=∠EBC=45°,或者作BF//EC.再用含m的式子表示点F的坐标.然后根据夹角相等,两边对应成比例列关于m的方程.满分解答(1)将M(2,2)代入1(2)()yxxmm,得1

24(2)mm.解得m=4.(2)当m=4时,2111(2)(4)2442yxxxx.所以C(4,0),E(0,2).所以S△BCE=1162622BCOE.(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时

,BH+EH最小.设对称轴与x轴的交点为P,那么HPEOCPCO.因此234HP.解得32HP.所以点H的坐标为3(1,)2.(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.由于∠BCE=

∠FBC,所以当CEBCCBBF,即2BCCEBF时,△BCE∽△FBC.设点F的坐标为1(,(2)())xxxmm,由''FFEOBFCO,得1(2)()22xxmmxm.解得x=m+2.所以F′(m+2,0).由'

COBFCEBF,得244mmBFm.所以2(4)4mmBFm.由2BCCEBF,得222(4)4(2)4mmmmm.整理,得0=16.此方程无解.图2图3图4②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,由

于∠EBC=∠CBF,所以BEBCBCBF,即2BCBEBF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得1(2)()2xxmxm.解得x=2m.所以F′(2,0)m.所以BF′=2m+2,2(22)BFm.由2BCBEBF

,得2(2)222(22)mm.解得222m.综合①、②,符合题意的m为222.考点伸展第(4)题也可以这样求BF的长:在求得点F′、F的坐标后,根据两点间的距离公式求BF的长.例5如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接

写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O

1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运

动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t

的值;若不存在,请说明理由.图1图2动感体验请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形和图象,可以体验到,x2-x1随S的增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体

验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.思路点拨1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.2.第(

3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变.变化的直线PQ的斜率,因此假设直线PQ与AB的交点G在x轴

的下方,或者假设交点G在x轴的上方.满分解答(1)抛物线的对称轴为直线1x,解析式为21184yxx,顶点为M(1,18).(2)梯形O1A1B1C1的面积12122(11)3()62xxSxx,由

此得到1223sxx.由于213yy,所以22212211111138484yyxxxx.整理,得212111()()384xxxx.因此得到2172xxS.当

S=36时,212114,2.xxxx解得126,8.xx此时点A1的坐标为(6,3).(3)设直线AB与PQ交于点G,直线AB与抛物线的对称轴交于点E,直线PQ与x轴交于点F

,那么要探求相似的△GAF与△GQE,有一个公共角∠G.在△GEQ中,∠GEQ是直线AB与抛物线对称轴的夹角,为定值.在△GAF中,∠GAF是直线AB与x轴的夹角,也为定值,而且∠GEQ≠∠GAF.因此只存在∠GQE=∠GAF

的可能,△GQE∽△GAF.这时∠GAF=∠GQE=∠PQD.由于3tan4GAF,tan5DQtPQDQPt,所以345tt.解得207t.图3图4考点伸展第(3)题是否存在点G在x轴上方的情况?如图4,假如

存在,说理过程相同,求得的t的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例6如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P

作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点

P在抛物线上运动,可以体验到,△PAM的形状在变化,分别双击按钮“P在B左侧”、“P在x轴上方”和“P在A右侧”,可以显示△PAM与△OAC相似的三个情景.双击按钮“第(3)题”,拖动点D在x轴上方的抛物线上

运动,观察△DCA的形状和面积随D变化的图象,可以体验到,E是AC的中点时,△DCA的面积最大.思路点拨1.已知抛物线与x轴的两个交点,用待定系数法求解析式时,设交点式比较简便.2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长

.3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA可以分割为共底的两个三角形,高的和等于OA.满分解答(1)因为抛物线与x轴交于A(4,0)、B(1,0)两点,设抛物线的解析式为)4)(1(xxa

y,代入点C的坐标(0,-2),解得21a.所以抛物线的解析式为22521)4)(1(212xxxxy.(2)设点P的坐标为))4)(1(21,(xxx.①如图2,当点P在x轴上方时,1<x<4,)4)(1(21xxPM,xAM4.如果2COAOP

MAM,那么24)4)(1(21xxx.解得5x不合题意.如果21COAOPMAM,那么214)4)(1(21xxx.解得2x.此时点P的坐标为(2,1).②如图3,当点P在点A的右侧时,x>4,)4)(1(21xxPM,4xAM.解方程24)4

)(1(21xxx,得5x.此时点P的坐标为)2,5(.解方程214)4)(1(21xxx,得2x不合题意.③如图4,当点P在点B的左侧时,x<1,)4)(1(21xxPM,xAM4.解方程24)4)(1(21

xxx,得3x.此时点P的坐标为)14,3(.解方程214)4)(1(21xxx,得0x.此时点P与点O重合,不合题意.综上所述,符合条件的点P的坐标为(2,1)或)14,3(或

)2,5(.图2图3图4(3)如图5,过点D作x轴的垂线交AC于E.直线AC的解析式为221xy.设点D的横坐标为m)41(m,那么点D的坐标为)22521,(2mmm,点E的坐标为)221,(mm.所以)221()22521(2mmmDEmm22

12.因此4)221(212mmSDACmm424)2(2m.当2m时,△DCA的面积最大,此时点D的坐标为(2,1).图5图6考点伸展第(3)题也可以这样解:如图6,过D点构造矩形OAMN,那么△DCA的面积等于直角梯形CAMN的面积减去△CDN和△A

DM的面积.设点D的横坐标为(m,n))41(m,那么42)4(21)2(214)22(21nmmnnmnS.由于225212mmn,所以mmS42.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?