【文档说明】《26.3 用频率估计概率》教学设计2-九年级下册数学沪科版.doc,共(5)页,291.500 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-20319.html
以下为本文档部分文字说明:
126.3.1利用频率估计概率教学目标知识和能力1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。2、能够通过试验获得事件发生的频率,并通过大量重复试验,让学生体会到随机事件内部所蕴涵的客观规律——频率的稳定性.知道大量重复试验时频率可作为事件发生概率的
估计值.进一步发展概率观念。过程和方法通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。情感态度价值观1、通过具体情境使学生
体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。2、在经历用试验的方法探究概率的过程中,培养学生的动手能力、处理数据的能力,进一步增强统计意识、发展概率观念,同时培养学生实事求是的态度、勇于探索的精神及交流与协作精神.教学重点
理解当试验次数较大时,试验频率稳定于理论概率。教学难点对频率与概率之间关系的理解。理解公式:P(A)=P.教学准备教师多媒体课件学生预习新课,尝试投硬币实验。课堂教学程序设计设计意图一、情境导入:妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样
公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由!二、知识精讲:1、问题一(掷硬币试验)全班共分8个小组,每小组5
人,共抛50次,推荐组长一名,组长不参与抛掷.(1)抛掷要求:①抛掷时请将书本文具收入课桌内;②两人一组合,完成25次抛掷,一人抛一人画“正”记数,抛掷一次划记一次,“正面向上”一次划记一次;③抛的高度
要达到自己坐姿的头顶高度,若硬币掉在地上,本次不作记录.(2)组长职责:①检查组员抛掷是否符合要求;②收集本组数据,把数据录入教师机中的抛掷情况表.全班共同填写硬币抛掷统计表(表3),将第1组数据填在第一列,第1、2组的数据之和
填在第二列,„„8个组的数据之和填在第8列.设计意图:①“在相同条件下”使数据更真实有效;②合理分组,可以减少劳动强度,加快试验速度,同时在培养动手能力与探索精神中,培养团队协作精神.表1(个人抛掷情况统计表)表2(小组抛掷情况统计表)2表3(硬币抛掷统计表)设计意图:这几个图表的
给出可以正确有效地引导学生在有限的课堂时间内高效率地得到相关的试验数据及整理描述数据,为分析数据作准备.同时,试验整个操作过程均由学生参与完成,教师只是作为组织者参与其中,关注学生的投入程度──能否积极、主动地从
事各项活动,向同伴解释自己的想法,听取别人的建议与意见;关注学生在活动中表现出的实践能力、思维水平、团队意识.问题二:分析试验结果及史上数学家大量重复试验数据,大家有何发现?3、分析数据全班填写表3得到硬币正面向上频率的同时,教师在黑板上绘制折线图,完成后教师提问:①随着抛掷次数的
增加,“正面向上”的频率在哪个数字的左右摆动?②随着抛掷次数的增加,“正面向上”的频率在0.5的左右摆动幅度有何规律?(学生从折线图1中难以发现)师:接下来,我们增加试验次数,看看有什么新的发现,历史上有许多数学家为了弄清其中的规律,曾坚持不懈的做了成千上万次的掷硬币试验.引导学生关注数学家
的严谨,师:还有一位数学家,做了八万多次的试验.3观察频率在0.5附近摆动幅度有何规律?观察折线图2:③请大家分析,两个折线图反映的规律有何区别?什么原因造成了不同?学生得出:图一,试验次数少一些,“正面向上”的频率在0.5左右摆动的幅度大一些.④你们认为出现的规律与试验次数有何关
系?(试验次数越多频率越接近0.5,即频率稳定于概率.)⑤数学家为什么要做那么多试验?⑥当“正面向上”的频率逐渐稳定到0.5时,“反面向上”的频率呈现什么规律?概率与频率稳定值的关系是什么呢?师生共同小结:
至此,我们就验证了可以用计算罚篮命中率的方法来得到硬币“正面向上”的概率.设计意图:这六个问题的设置,循序渐进,促使学生更深入的分析数据,学生发现大量重复试验时频率稳定于概率,在头脑中再现了知识的形成过程,避免单纯地记忆,使学习成为一种再创造的过
程.问题三、见教材P105页1.某农科院所通过抽样试验来估计一大批种子(总体)的发芽率,为此,从中抽取10批,分别做发芽试验.记录下每批发芽粒数,并算出发芽的频率发芽粒数与每批试验粒数之比.结果如下表:四、拓展结论:由上面试验所得数据可以看出:当发芽试验样本容量增大时,发芽的频率逐渐稳定到常数
0.9.三、合作交流:1.某射击运动员在同一条件下的射击成绩记录如下:4射击次数n20100200500800击中靶心次数m1358104255404击中靶心频率m/n①这个射手射击一次,击中靶心的概率是多少?(精确到0.01);②这射手射击1600次,击中靶心
的次数是四、巩固提高:2.完成下表:根据表格回答:某水果公司以2元/千克的成本新进了10000千克柑橘,如果公司希望这些柑橘能够获得利润5000元,那么在出售柑橘(已去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?从表可以看出,柑橘损坏的频率在常数_
____左右摆动,并且随统计量的增加这种规律逐渐______,那么可以把柑橘损坏的概率估计为这个常数.如果估计这个概率为0.1,则柑橘完好的概率为_______.五、课堂小结:(畅所欲言)。1.随机事件的概念:在一定条件下可能发生也可能
不发生的事件,叫做随机事件2.随机事件的概率的定义:在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率.作业设计必做教材:P109习题26.3第1、2、3题选做教材:P108练习:第1~5题5教
学反思