【文档说明】《正方形》PPT课件2-八年级下册数学沪科版.ppt,共(36)页,912.000 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-20116.html
以下为本文档部分文字说明:
小结与复习第19章四边形沪科版八年级数学下册一、多边形的内角和与外角和多边形的内角和等于(n-2)×180°多边形的外角和等于360°正多边形每个内角的度数是正多边形每个外角的度数是(2)180,nn
360.n要点梳理几何语言文字叙述对边平行对边相等对角相等∴AD=BC,AB=DC.∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D.∵四边形ABCD是平行四边形,二、平行四边形的性质对角线互相平分∵四边形ABCD是平行四边
形,∴OA=OC,OB=OD.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.几何语言文字叙述两组对边相等一组对边平行且相等∴四边形ABCD是平行四边形.∵AD=BC,AB=DC,∴四边形ABCD是平行四边形.∵AB=DC,AB∥DC,三、平行四边形的判定对角线互相
平分∴四边形ABCD是平行四边形.∵OA=OC,OB=OD,两组对边分别平行(定义)∴四边形ABCD是平行四边形.∵AD∥BC,AB∥DC,平行线之间的距离处处相等2.三角形的中位线定义:连结三角形两边中点的线段叫做三角形的中位线.3.三角形的中位线性质:三角形的中位线平行于第三边,并
且等于第三边的一半.四、三角形的中位线用符号语言表示∵DE是△ABC的中位线∴DE∥BC,1.2DEBC1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。推论:过三角形一边中点平行另一边的直线必平分第三边项目四边形
对边角对角线平行且相等平行且四边相等平行且四边相等四个角都是直角对角相等邻角互补四个角都是直角互相平分且相等互相垂直平分且相等,每一条对角线平分一组对角互相垂直且平分,每一条对角线平分一组对角五、矩形、菱形、正方形的性质四边形条件①定义:有一个角是直角的平行四边形②三个角是直角的四边形③对角线相
等的平行四边形①定义:一组邻边相等的平行四边形②四条边都相等的四边形③对角线互相垂直的平行四边形①定义:一组邻边相等且有一个角是直角的平行四边形②有一组邻边相等的矩形③有一个角是直角的菱形六、矩形、菱形、正方形的判定方法考点一多边形的内角和与外角和例1:已知一个多边形的每个外角都是其相邻内角度
数的,求这个多边形的边数.14解:设此多边形的外角的度数为x,则内角的度数为4x,则x+4x=180°,解得x=36°.∴边数n=360°÷36°=10.考点讲练1.一个正多边形的每一个内角都等于120°,则其边数是.6【解析】因为该多边形的每一个内角都等于120度,所以它的每一个外角
都等于60°.所以边数是6.归纳拓展在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.针对训练考点二平行四边形的性质例2如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠
2B.∠BAD=∠BCDC.AB=CDD.AC=BC【解析】A.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,故A正确;B.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,故B正确;C.∵四边形ABCD是平行四边形,∴AB=CD,故C正确;
D方法总结主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等.针对训练2.如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BC
D,(平行四边形的对角相等,对边相等)∵AE平分∠BAD,CF平分∠BCD,∴∠EAB=∠BAD,∠FCD=∠BCD,∴∠EAB=∠FCD,在△ABE和△CDF中∠B=∠DAB=CD∠EAB=∠FCD∴△ABE≌△CDF,∴BE=DF.∵AD=BC∴AF=EC.1212例3如图,在▱ABC
D中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cmB.5cmC.6cmD.8cm【解析】∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.121222OA-O
DA方法总结主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.【解析】∵在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,∴AO=CO=12c
m,BO=19cm,AD=BC=28cm,∴△BOC的周长是:BO+CO+BC=12+19+28=5(cm).针对训练3.如图,在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是()A.45cmB.59cmC.62cmD.
90cmB考点三平行四边形的判定例4如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=ODB.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BCD.AB=CD,AO=C
OD平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行
四边形.方法总结针对训练4.如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(1)证明:∵AC∥DE,∴∠ACD=∠EDF,∵BD=CF,∴BD+DC=CF+DC,即BC=DF,又∵
∠A=∠E,∴△ABC≌△EFD(AAS),∴AB=EF.(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知△ABC≌△EFD,∴∠ABF=∠EFB,∴AB∥EF,又
∵AB=EF,四边形ABEF为平行四边形(一组对边平行且相等的四边形是平行四边形).考点四三角形的中位线例5已知:AD是△ABC的中线,E是AD的中点,F是BE的延长线与AC的交点。求证:.证明:过点D作DH∥BF,交AC于点H.∵AD是△ABC的中线.∴D是BC的中点.∴CH=HF=CF.∵
E是AD的中点,EF∥DH.∴AF=FH.∴AF=FC.FCAF21ABCDEFH1212针对训练5.若三角形的三条中位线之比为6:5:4,三角形的周长为60cm,那么该三角形中最长边的边长为___;解析:设三角形的三条中位线之长分别为6x,5x,4
x,则三角形的三条边长之长分别为12x,10x,8x,依题意有12x+10x+8x=60,解得x=2.所以,最长边12x=24(cm).24cm例6:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5,求矩形
对角线的长.解:∵四边形ABCD是矩形.∴AC=BD(矩形的对角线相等).OA=OC=AC,OB=OD=BD,(矩形对角线相互平分)∴OA=OD.ABCDO考点五矩形的性质和判定1212ABCDO∵∠AOD=120°,∴∠ODA=∠OAD=(180°-120°)=3
0°.又∵∠DAB=90°,(矩形的四个角都是直角)∴BD=2AB=2×2.5=5.126.如图,在□ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求□ABCD的面积.解:∵四边形AB
CD是平行四边形,∴OA=OC,OB=OD.又∵△ABO是等边三角形,∴OA=OB=AB=4,∠BAC=60°.∴AC=BD=2OA=2×4=8.ABCDO针对训练∴□ABCD是矩形(对角线相等的平行四边形是矩形
).∴∠ABC=90°(矩形的四个角都是直角).在Rt△ABC中,由勾股定理,得AB2+BC2=AC2,∴BC=.∴S□ABCD=AB·BC=4×=ABCDO22228443ACAB431637
.如图,O是菱形ABCD对角线的交点,作BE∥AC,CE∥BD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.DABCEO解:四边形CEBO是矩形.理由如下:已知四边形ABCD是菱形.∴AC⊥BD.∴∠BOC=
90°.∵DE∥AC,CE∥BD,∴四边形CEBO是平行四边形.∴四边形CEBO是矩形(有一个角是直角的平行四边形是矩形).例7:如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD=6,求菱形的边长AB和对角线AC的长.解:∵四边形
ABCD是菱形,∴AC⊥BD(菱形的对角线互相垂直)OB=OD=BD=×6=3(菱形的对角线互相平分)在等腰三角形ABC中,∵∠BAD=60°,∴△ABD是等边三角形.∴AB=BD=6.ABCOD考点六菱形的性质和判定121233,63.AOA
C证明:在△AOB中.∵AB=,OA=2,OB=1.∴AB2=AO2+OB2.∴△AOB是直角三角形,∠AOB是直角.∴AC⊥BD.∴□ABCD是菱形(对角线垂直的平行四边形是菱形).8.已知:如右图,在□ABCD中,对角线AC与BD相
交于点O,AB=,OA=2,OB=1.求证:□ABCD是菱形.5ABCOD5针对训练9.如图,两张等宽的纸条交叉重叠在一起,猜想重叠部分的四边形ABCD是什么形状?说说你的理由.ABCDEF解:四边形ABCD是菱形.过点C作A
B边的垂线交点E,作AD边上的垂线交点F.S四边形ABCD=AD·CF=AB·CE.由题意可知CE=CF且四边形ABCD是平行四边形.∴AD=AB.∴四边形ABCD是菱形.例8:如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间有怎样的关系?请
说明理由.解:BE=DF,且BE⊥DF.理由如下:(1)∵四边形ABCD是正方形.∴BC=DC,∠BCE=90°.(正方形的四条边都相等,四个角都是直角)∴∠DCF=180°-∠BCE=180°-90°=90°.ABDCFE考点七正方形的性质和判定∴
∠BCE=∠DCF.又∵CE=CF.∴△BCE≌△DCF.∴BE=DF.(2)延长BE交DE于点M,∵△BCE≌△DCF,∴∠CBE=∠CDF.∵∠DCF=90°,∴∠CDF+∠F=90°.∴∠CBE+∠F=90°,∴∠BMF=90°.∴BE⊥DF.ABDFECM10.如图,在矩
形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.FABECD解析:先由两组平行线得出四边形BECF平行四边形;再由一个直角,得出是矩形;最后由一组邻边相等可得正方形.45°45°针对训练FABECD证明:∵BF∥CE
,CF∥BE,∴四边形BECF是平行四边形.∵四边形ABCD是矩形,∴∠ABC=90°,∠DCB=90°,∵BE平分∠ABC,CE平分∠DCB,∴∠EBC=45°,∠ECB=45°,∴∠EBC=∠ECB.∴EB=E
C,∴□BECF是菱形.在△EBC中∵∠EBC=45°,∠ECB=45°,∴∠BEC=90°,∴菱形BECF是正方形.(有一个角是直角的菱形是正方形)平行四边形性质①对边平行且相等②对角相等,邻角互补③对角线互相平分判别①两组对边分别平行的②两组对边分别相等的③一组对边平行且相等的④对
角线互相平分的四边形平行四边形课堂小结三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.多边形的内角和与外角和内角和计算公式(n-2)×180°(n≥3的整数)外角和多边形的外角和等于36
0°特别注意:与边数无关正多边形内角=,外角=(2)180nn360n四边形的分类及转化平行四边形矩形菱形正方形一组邻边相等且一个内角为直角(或对角线互相垂直且相等)课堂小结