【文档说明】《边边边》PPT课件3-八年级上册数学华师大版.ppt,共(12)页,323.000 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-14006.html
以下为本文档部分文字说明:
13.2三角形全等的判定第5课时边边边教学目标1.理解和掌握“S.S.S”判定方法,能运用它判定两个三角形全等。2.经历证明的探究过程,提高学生推理能力和发现探索的能力。3.学会寻找三角形全等的条件,提高学生总结归纳
能力以及与他人合作的能力。教学重点边边边定理的灵活运用教学难点怎样寻找三条相等的边一、复习引入已知:如图,∠DAB=∠CAB,∠DBE=∠CBE。求证:AC=AD.二、自主学习问题1:动手实验:拿出自己的30°角的直角三角板,小组四人合作,比较三角板的大小
是否一样,能否完全重合?说出你的发现。问题2:画图实验:用刻度尺和圆规画一个ΔABC,使AB=10cm,BC=15cm,CA=20cm。步骤:(1)画线段AB=10cm.(2)分别以A、B为圆心,20cm、1
5cm长为半径画两条圆弧,交于点C.(3)连结AC、BC。△ABC即为所求。如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.)。三、合作探究例:如图四边形ABC
D中,AD=BC,AB=DC,求证:△ABC≌△CDA.ABCD证明:在△ABC和△CDA中:AD=BC(已知),AB=DC(已知),AC=AC(公共边),所以△ABC≌△CDA(SSS)注意:三边相等如何找:两组是已知,一组是公共边。2.小组合作归纳总
结完成下表对应相等的元素两边一角两角一边三角三边两边及其夹角两边及其中一边的对角两角及其夹边两角及其中一角的对边三角形是否全等一定(S.A.S)不一定一定(A.S.A)一定(A.A.S)不一定一定(S.S.S)判定三角形全等至少有一组
边四、课堂练习1.如图,点A,D,B,E在同一条直线上AC=DF,BC=EF,AD=BE.求证:∠C=∠F。CABFDE2.如图,AC、BD相交于点O,且AB=DC,AC=DB求证:(1)∠A=∠D(2)OB=OC(3)OA=ODDCBAO五、课堂小结本节课你收获
了什么?六、课堂检测1.如下图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证:△ABD≌△ACD