【文档说明】福建省福清市2020届高三下学期3月“线上教学”质量检测 数学(理) 含答案.doc,共(10)页,556.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-68357.html
以下为本文档部分文字说明:
·1·绝密★启用前福清市2020届高三年“线上教学”质量检测数学(理科)试卷(完卷时间120分钟;满分150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至5页.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一
项是符合题目要求的.1.已知集合5Uxx,327xAx„,则AðUA.3xx„B.5xxC.35xxD.035xxx或„2.已知复数z满足0zz,且9zz,则zA.3B.3iC.3D.3i3.已知两个力14,
2F,22,3F作用于平面内某静止物体的同一点上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力3F,则3FA.2,5B.2,5C.5,2D.5,24.已知等比数列na
的前n项和为nS,若24132aaaa,且135512aaa,则10SA.1022B.2046C.2048D.40945.如图1为某省2019年1~4月快递业务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是A.2019年1~4月的业务量,
3月最高,2月最低,差值接近2000万件B.2019年1~4月的业务量同比增长率超过50%,在3月最高C.从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长
6.已知222fxxxf,则曲线yfx在点1f1,处的切线方程为·2·A.490xyB.610xyC.1010xyD.610xy7.若412(1)xax展开式中2x的系数为7
8,则整数a的值为A.3B.2C.2D.38.已知函数()eexxfx,若0.50.6a,0.5log0.6b,0.6log5c,则A.()()()fafbfcB.()()()fcfbfaC.()()()fbfa
fcD.()()()fcfafb9.如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A.4B.163C.323D.1610.将曲线12sin124yx向左平移4个单位长
度,得到曲线的对称中心为A.2,0,kkZB.2,0,4kkZC.2,1,4kkZD.2,1,4kkZ11.已知双曲线2222:10,0xyEabab的右焦点F的坐标为,0c,过F作与E的
两条渐近线平行的直线12,ll,若12,ll与E的渐近线分别交于,AB两点,且四边形OAFB(O为坐标原点)的面积为bc,则E的离心率为A.3B.2C.3D.212.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.如图,将正方体
沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,它们的棱长都相等,其中八个为正三角形,六个为正方形,称这样的半正多面体为二十四等边体.若棱长为2的二十四等边体的各个顶点都在同一个球面上,则该球的表面积为A.16πB.32π3C.8πD.4π第Ⅱ
卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.·3·13.已知3sintan80,,2,则tan______.14.某电
视台的夏日水上闯关节目中的前三关的过关率分别为542,,655,只有通过前一关才能进入下一关,且通过每关相互独立.某选手参加该节目,则该选手能进入第四关的概率为_________.15.已知等差数列na的前n项和为nS,且1310aa,972S.数列n
b的首项为3,且13nnbb,则210020ab________.16.过点1,0M的直线l与抛物线C:24yx交于,AB两点(A在,MB之间),F是C的焦点,点N满足6NFAF,则ABF△与AMN△的面积之和的最小值是____
__.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知ABC△的内角,,ABC的对边分别为,,abc,设7coscosa
BbAac,且sin2sinAA.(1)求A及a;(2)若2bc,求BC边上的高.18.(本小题满分12分)如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD平面CDEF,90BADCDA,122ABADDECD
,M是AE的中点.(1)证明:AC∥平面MDF;(2)求平面DMF与平面ABCD所成锐二面角的余弦值.19.(本小题满分12分)2019年9月24日国家统计局在庆祝中华人民共和国成立70周年活动新闻中心举办新闻发布会
指出,1952年~2018年,我国GDP查679.1亿元跃升至90.03万亿元,实际增长174倍;人均GDP从119元提高到6.46万元,实际增长70倍.全国各族人民,砥砺奋进,顽强拼搏,实现了经济社
会的跨越式发展.如图是全国2010年至2018年GDP总量y(万亿元)的折线图.·4·注:年份代码1~9分别对应年份2010~2018.(1)由折线图看出,可用线性回归模型拟合y与年份代码t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(
系数精确到0.01),并预测2021年全国GDP的总量.附注:参考数据:9922111199582.01,64.668,3254.80,345.900iiiiiiiiittyyyyty
.参考公式:相关系数12211niiinniiiittyyrttyy;回归方程yabt$$$中斜率和截距的最小二乘法估计公式分别为121niiiniittyybtt$,ayb
t$$.20.(本小题满分12分)已知椭圆2222:10xyCabab过点2,1P,且离心率为32.(1)求C的方程;(2)已知直线l不经过点P,且斜率为12,若l与C交于两个不同点,AB,且直线,PAPB的倾斜角分别为,,试判断
是否为定值,若是,求出该定值;否则,请说明理由.21.(本小题满分12分)已知函数ln2sinfxxxx,证明:(1)fx在区间0,存在唯一极大值点;(2)fx有且仅有2个零点.(二)选考题:共10分.请考生在第22,23两题中任选一题作答.如果多做,则按所做第一
个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为232212xtyt(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐
标系中,曲线C的方程为4cos6sin.·5·(1)求C的直角坐标方程;(2)设C与l交于点MN,,点A的坐标为3,1,求AMAN.23.(本小题满分10分)选修45:不等式选讲已知函数211,fxxax
(1)当2a时,求不等式1fx的解集;(2)当1,2x时,不等式1fxx成立,求实数a的取值范围.福清市2020届高三年“线上教学”质量检测理科数学参考答案及评分细则评分说明:1.本解答给出了解法供参考,如果考生的解法与本解答不同,可根据试题
的主要考查内容比照评分标准制定相应的评分细则。2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如
果后继部分的解答有较严重的错误,就不再给分。3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。4.只给整数分数。选择题和填空题不给中间分。一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分.1.C2.C3.A4.B5.D6.D7.A
8.A9.B10.C11.B12.A二、填空题:本大题共4小题,每小题5分,共20分.13.2214.41515.1316.8三、解答题:本大题共6小题,共70分.17.【命题意图】本题主要考查解三角形、正
弦定理和余弦定理等基础知识,意在考查逻辑推理、数学运算、直观想象的数学核心素养.满分12分.【解析】(1)因为7coscosaBbAac,根据正弦定理得,·6·7sincossincossin,7
ABBAaC································································2分7sinsin,7CaC又因为sin0,C,7.a
·································································································3分sin2sin,
2sincossin,AAAAA······························································4分因为sin0,A所以1cos2A,······································
································5分(0,),.3AA··············································································
······6分(2)由(1)知,7,.3aA由余弦定理得2222cos,abcbcA2227,7(),bcbcbcbc·······························
·································8分因为2bc,所以74,bc所以3.bc·······················································9分设BC边上的高为h.11333sin3.2224ABCSbcA
△··························································10分11337,224ABCSahh△,321.14h即BC边上的
高为32114.············································································12分18.【命题意图】本题主要考查直
线与直线、直线与平面的位置关系,二面角等基础知识,意在考查直观想象、逻辑推理与数学运算的数学核心素养.满分12分.【解析】(1)连结CE,交DF于N,连结MN,如图所示,因为四边形CDEF是矩形,所以N是CE的中点,···························
·················1分由于M是AE的中点,所以//MNAC,·························································································2分由于MN平面MDF,
AC平面MDF,所以//AC平面MDF.………………………………………4分(2)因为平面ABCD平面CDEF,平面ABCD平面CDEFCD,DECD,所以DE平面ABCD,可知,,ADCDDE两两
垂直,········································································5分以点D为原点,分别以,,DADCDEuuuruuuruuur的方向为x轴、y轴、z轴的正方向,建立空间直角
坐标系Oxyz.因为2AB,则(1,0,1)M,(0,4,2)F,(1,0,1)DM,(0,4,2)DF,设平面MDF的法向量为1(,,)nxyz,·7·则110,0,nDMnDF所以0,420,xzyz··············
····················································7分取1y,则1(2,1,2)n,······································
····································8分依题意,得平面ABCD的一个法向量为2(0,0,1)n,········································9分12121222cos,34141nnnn
nn,··················································11分故平面MDF与平面ABCD所成锐二面角的余弦值为23.·················
···················12分19.【命题意图】本题主要考查线性回归、相关系数等基础知识,意在考查数学建模、数学抽象、数学运算、数据分析的数学核心素养.满分12分.【解析】(1)由折线图中的数据
和附注中参考数据得12345678959t,·····························································1分92160iitt,············
··········································································2分999111iiiiiiiittyytyty3254.8055
82.01344.75,·······················4分所以344.750.997345.90r,···································································
·········5分因为y与t的相关系数近似为0.997,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.···················································6分(2)由已知及(1)得91921
ˆiiiiittyybtt344.755.74660,··························8分64.6685.74ˆ653ˆ5.94aybt,···················································
········9分所以y关于t的回归方程为35.945.75yt.····················································10分将2021年对应的年份代码12t代入回归方
程,得35.945.7512104.94y,所以预测2021年全国GDP总量约为104.94万亿元.·······································12分20.【命题意图】本题主要考查椭圆方程、
直线与椭圆的位置关系等基础知识,意在考查的数学核心素养是直观想象、逻辑推理与数学运算.满分12分.【解析】(1)由题意得2222411312abcbeaa,··········································
·······2分解得228,2ab,····················································································3分所以C的方程为
22182xy.········································································4分·8·(2)设直线1:02lyxmm,11
22,,,AxyBxy,由2212182yxmxy,得222240xmxm,由22481600mmm,解得20m或02m,···································5分则212122,24xxm
xxm,····································································6分依题意,易知PA与PB的斜率存在,所以,22,设直线PA与PB的斜率分
别为12,kk,则1tank,2tank,··························7分欲证,只需证tantantan,即证120kk.······
··············8分12121211,,22yykkxx故1221121122121212112222yxyxyyxxxxkk.··
································9分又111,2yxm2212yxm,所以12211212yxyx122111121222xmxxmx
··················································10分121212241xxmxxmxx2242241mmmm0,···························
············································································11分120,kk所以.·······························
·········································12分21.【命题意图】本题主要考查函数和导数及其应用、三角函数等基础知识,意在考查直观想象、逻辑推理与数学运算的数学核心素养.满
分12分.【解析】(1)设112cosgxfxxx,···················································1分当0,x时,212sin0gxxx
,所以gx在0,上单调递减,····································································2分又因为331103g,
2102g,········································3分所以gx在,32上有唯一的零点,即函数fx在0,上
存在唯一零点.··························································4分当0,x时,0fx,fx在0,上单调递增;
·9·当,x时,0fx,fx在,上单调递减;所以fx在0,上存在唯一的极大值点.32····································5分(2)①由(1)知:fx在
0,上存在唯一的极大值点.32所以ln2202222ff,又因为2222111122sin220eeeef,所以fx在0,上恰有一个零点
.·····························································6分又因为ln20f,所以fx在,上也恰有一个零
点.··························································7分②当,2x时,sin0x≤,lnfxxx≤,设lnhxxx,110hxx,所以hx在,2上单调递减,所以0hxh„
,·····································8分所以当,2x时,0fxhxh≤≤恒成立,所以fx在,2上没有零点.················
··················································9分③当2,x时,ln2fxxx≤,设ln2xxx,110xx,所以x在2,上单调递减,所以2
ln222222420x≤···································10分所以当2,x时,20fxx≤≤恒成立所以
fx在2,上没有零点.·······························································11分综上,fx有且仅有两个零点.····················
·············································12分22.【命题意图】本题主要考查直线的参数方程和参数的几何意义,直角坐标方程和极坐标方程的互化,直线和圆的位置关系等基础知识,意在考
查直观想象、逻辑推理与数学运算的数学核心素养.满分10分.【解析】(1)曲线C的方程4cos6sin,∴24cos6sin,····················································
······················2分∴2246xyxy,·················································································4分即C的直角坐标
方程为222313xy.··················································5分(2)设点MN,对应的参数分别为12tt,.·10·把直线232212xtyt(t为参数)代入C得,2
222121322tt,整理得,23280tt.23232500,1232tt,128tt,·········································7分∴12tt,为异
号,························································································8分又∵点3,1A在直线l上,∴21212121245052AMANtttttttt.
···························10分23.【命题意图】本题主要考查解绝对值不等式和不等式恒成立等基础知识,意在考查直观想象、逻辑推理与数学运算的数学核心素养.满分10分.【解析】1当2a时,21211
fxxx,当12x„时,不等式122121fxxx成立;··································1分当1122x时,122141f
xxxx,1124x;·················································································
······2分当12x…时,212121fxxx不成立,·······································3分综上,不等式1fx的解集为14xx
.····················································5分(2)当1,2x时,1fxx化为2111xaxx,321xax,·········································
············································6分23132,xaxx1333axx,····················································7分13yx在1
,2单调递减,故522y;················································8分33yx在1,2单调递增,故302y,·········
·············································9分所以20a剟,所以a的取值范围是2,0.·····················································
····················10分