【文档说明】福建省福清市2020届高三下学期3月“线上教学”质量检测 数学(文) 含答案.doc,共(11)页,456.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-68356.html
以下为本文档部分文字说明:
·1·福清市2020届高三年“线上教学”质量检测文科数学试卷(满分:150分考试时间:120分钟)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(必考题和选考题两部分).第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5
分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合260Axxx,ln1Bxyx,则AB(A)12xx(B)12xx(C)13xx(
D)13xx(2)已知复数z满足113zii,其中i为虚数单位,则在复平面内z对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)已知圆222:10Cxyr
r,直线:3420lxy.若圆C上恰有三个点到直线的距离为1,则r的值为(A)2(B)3(C)4(D)6(4)执行如图所示的程序框图,则输出的S是(A)3(B)1(C)1(D)3(5)甲、
乙、丙、丁、戊五人乘坐高铁出差,他们正好坐在同一排的A、B、C、D、F五个座位.已知:(1)若甲或者乙中的一人坐在C座,则丙坐在B座;(2)若戊坐在C座,则丁坐在F座.如果丁坐在B座,那么可以确定的是:(A)甲坐在A座(B)乙坐在D座(C)丙坐在C座(D)戊坐在F座(6)如图,如
图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,已知其俯视图是正三角形,则该几何体的表面积是(A)225(B)425(C)235(D)435(第4题图)俯视图侧视图正视图(第6题图)·2·(7)下列图象中,函数sinxxfxeex,,x图象的
是yxπ-πOyxπ-πOyxπ-πOyxπ-πO(A)(B)(C)(D)(8)已知0,2x,0,2y,cossin1cos2cossinsin2xxyxxy,则(
A)4yx(B)24yx(C)2yx(D)22yx(9)将函数sin3fxx的图象横坐标变成原来的12(纵坐标不变),并向左平移3个单位,所得函数记为gx.若12,0,2xx,12xx
,且12gxgx,则12gxx(A)12(B)32(C)0(D)32(10)已知正方体1111ABCDABCD的棱长为2,1AC平面.平面截此正方体所得的截面有以下四个结论:①截面形状可能是正三角形②截面的形状可能是正方形③截面形状可能是正五边
形④截面面积最大值为33则正确结论的编号是(A)①④(B)①③(C)②③(D)②④(11)若函数1xfxkx有两个零点,则k的取值范围是(A)0,(B)0,11,(C)0,1(D)1,(12)已知抛物
线220ypxp的焦点为F,与双曲线2222:10,0xyCabab的一条渐近线交于P(异于原点).抛物线的准线与另一条渐近线交于Q.若PQPF,则双曲线的渐近线方程为(A)yx(B)2yx(C)3yx(D)2y
x第Ⅱ卷(非选择题共70分)本卷包括必考题和选考题两部分.第13题第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.·3·(13)已知aab,abab,则a与b的夹角为(14)
已知实数,xy满足约束条件30,240,20,xyxyxy则2xy的最小值为(15)《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股十五步.文勾中容圆径几何?”其意思是:“已知直角三角形两直角边长分别为8步和15步,问
其内切圆的直径是多少?”现若向此三角形内投豆子,则落在其内切圆内的概率是(16)设△ABC的内角A,B,C所对的边分别为a,b,c,3b,2cos3cosacBC,则△ABC面积的最大值是三、解答题
:解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12分)据历年大学生就业统计资料显示:某大学理工学院学生的就业去向涉及公务员、教师、金融、公司和自主创业等五大行业.2020届该学院有数学
与应用数学、计算机科学与技术和金融工程等三个本科专业,毕业生人数分别是70人,140人和210人.现采用分层抽样的方法,从该学院毕业生中抽取18人调查学生的就业意向.(Ⅰ)应从该学院三个专业的毕业生中分别抽取多少人?(Ⅱ)国家鼓励大学生自主创业,在抽取的18人中,就业意向恰有三个行业的学
生有5人.为方便统计,将恰有三个行业就业意向的这5名学生分别记为A,B,C,D,E,统计如下表:ABCDE公务员○○×○×教师○×○×○金融○○○×○公司××○○○自主创业×○×○×其中“○”表示有该行业就业意向,“×”表示无该行业就业意向.现从A,
B,C,D,E这5人中随机抽取2人接受采访.设M为事件“抽取的2人中至少有一人有自主创业意向”,求事件M发生的概率.(18)(本小题满分12分)已知数列na的前n项和为nS,满足22nnaS(Ⅰ)求na;(Ⅱ)若数列nb满足
*14nnnnabnNSS,求nb的前n项和nT.·4·(19)(本小题满分12分)在三棱柱111ABCABC中,已知AB侧面11BBCC,2BC,12ABBB,14BCC,E为1BB中点,(Ⅰ)求证:1ACB
C(Ⅱ)求C到平面1ACE的距离.(20)(本小题满分12分)已知椭圆2222:10xyCabab的右焦点为F,离心率22e,过原点的直线(不与坐标轴重合)与C交于P,Q两点,且4PFQF(Ⅰ)
求椭圆C的方程;(Ⅱ)过P作PEx轴于E,连接QE并延长交椭圆于M,求证:以QM为直径的圆过点P.B1A1C1CBAE·5·(21)(本小题满分12分)已知函数2lnfxxmxmR的最大值是0,(Ⅰ)求m的值;(Ⅱ)若212fxxaxbe,求b
a的最小值.请考生在第(22)、(23)两题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑。(22)(本小题满分10分)选修4-4:坐标系与参数方程在直角
坐标系xOy中,直线l的参数方程为232212xtyt(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C的方程为4cos6sin.(Ⅰ)求C的直角坐标方程
;(Ⅱ)设C与l交于点MN,,点A的坐标为3,1,求AMAN.(23)(本小题满分10分)选修4-5:不等式选讲已知函数211,fxxax(Ⅰ)当2a时,求不等式1fx的解集;(Ⅱ)当1,2x时,不等式1fxx恒成立,求实数a的取值范围.·6·福清市202
0届高三年“线上教学”质量检测文科数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响
的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。4.只给整数分数。选择题和填空题不给中间分。一、选择题:本大题考
查基础知识和基本运算.每小题5分,满分60分.(1)C(2)A(3)A(4)B(5)C(6)B(7)D(8)A(9)D(10)A(11)C(12)D二、填空题:本大题考查基础知识和基本运算.每小题5分
,满分20分.(13)3(14)4(15)320(16)334三、解答题:解答应写出文字说明、证明过程或演算步骤.(17)··············································································
·······················本小题主要考查分层抽样、古典概型等基础知识,考查数据处理能力、运算求解能力、应用意识,考查统计与概率思想.满分12分.(Ⅰ)由已知,数学与应用数学、计算机科学与技术和金融工程
三个专业的毕业生人数之比为1:2:3,由于采取分层抽样的方法抽取18人,因此应从数学与应用数学、计算机科学与技术和金融工程三个专业分别抽取3人6人9人,··················································4分(Ⅱ)从
这5个人中随机抽取2人的所有结果有:,,,,,,,,,,,,ABACADAEBCBD,,,,,,,BECDCEDE,共10种···················································
·8分由统计表可知,事件M包含的结果有:,,,,,,,,,,,,ABBCBDBEADCDDE,,共7种··············································································
·····················10分所以事件M发生的概率为710PM····················································12分(18)·······
······························································································本小题考查等比·7·数列的通项公式、前n项和公式、数列求和等基础知识
,考查运算求解能力,考查函数与方程思想、分类与整合思想等.满分12分.(Ⅰ)当1n时,1122aS,故12a·················································
···1分由22nnaS……①得11222nnaSn②····································································3分①-②得,11220nnnnaa
SS,即1220nnnaaa整理得122nnaan故na是以2为首项,2为公比的等比数列,··········································5分所以1222n
nna,········································································6分(Ⅱ)由(Ⅰ)得,12122212nnnS········
····································7分112142211212122222121nnnnnnnnnb·····················
·····10分故1212231111111212121212121nnnnTbbb11121n·································
···················································12分(19)····················································
·················································本小题主要考查几何体的体积及直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想等.满分12分.(Ⅰ)∵
AB⊥侧面11BBCC,∴1ABBC……①··········································1分∵2BC,12CC,14BCC,∴2211112cos2BC
BCCCBCCCBCC∵22211BCBCCC,∴1BCBC……②··············································3分由①②及ABBCB
,故1BC平面ABC∵AC平面ABC,∴1BCAC··························································5分(Ⅱ)设C到平面1ACE的距离为d由11CACEACCEVV得,111133ACECCE
SdSAB……(*)···························7分·8·∵E为1BB中点,∴1111122122CCEBCCBSS································8分又1112BCBC,所以11CEBB,1111
2CEBB∵AB⊥侧面11BBCC,∴1ABCE又1ABBBB,故1CE平面11ABBA又AE平面11ABBA,所以1CEAE∵2,1,ABBEABBE,∴5AE故111522CEASAECE············
························································11分由(*)得522d,故455d,即C到平面1ACE的距离为455············12分(20)······························
·······································································本小题主要考查坐标法、椭圆的定义及标准方程、直线与椭圆的位置关系、圆的性质等基础知识,考查推理论证能力、运算求解
能力,考查数形结合思想、函数与方程思想、化归与转化思想等.满分12分.(Ⅰ)设F为椭圆的左焦点,由对称性可知,,OPOQOFOF故顶点为,,,PFQF的四边形是平行四边形,·························
·················2分故24aPFPFQFPF,2a又22cea,故2,2cb··················································
·········4分故所求椭圆方程为22142xy·······························································5分(Ⅱ)设过原点(不与坐标轴重合)的直线方程为0ykxk,1111
1,,,,,0PxkxQxkxEx则111012QEkxkkxx故1:2QEklyxx·······························································
·············7分与椭圆方程22142xy联立得,22222112280kxkxxkx又直线QE与椭圆C交于Q,M两点,所以21222PMkxxxk,即211222Mkxxxk故311222MMkxk
yxxk···································································10分所以112,2PQxkx,2112222,22kxkxPMkk·9·所以2221122
44022kxkxPQPMkk故PQPM,即90MPQ故以QM为直径的圆过点P.·······························································1
2分(21)·····································································································本小
题主要考查导数及其应用、不等式等基础知识,考查推理论证能力、运算求解能力、抽象概括能力等,考查函数与方程思想、化归与转化思想、分类与整合思想、数形结合思想等.满分12分.(Ⅰ)由已知得212120mxfxmxxxx·························
················1分当0m时,0fx,fx在0,上单调递增,不存在最大值,不符合题意舍去;·················································
·····················································2分当0m时,0fx解得12xm当102xm时,0fx,当12xm时,0fx故fx在10,2m上单调递增,1,2m
上单调递减·······················4分故2max111ln0222fxfmmmm解得12me·········
···········································································5分(Ⅱ)由已知条件得lnxaxb……(*)设ln
gxxaxb,(*)等价于证明0gx则1gxax①当0a时,则0gx,gx在0,上单调递增,当max1,bxa时,ln0gxxaxbaxb
故0a<不符合题意;·········································································7分②当0a时,当10xa时,0gx,当1xa时,
0gx故gx在10,a上单调递增,1,a上单调递减故gx有最大值111lnln1gababaaa······························9分·10·所以212fxxaxb
e等价于ln1ba,因此ln1baaa设ln1ahaa,则ha2lnaa当01a时,0ha,当1a时,0ha故ha在0,1上单调递减,在1,上单调递增故ha在1a处取得最小值,即11hah
,1ba·························11分故当1a,1b时,212fxxaxbe成立,综上ba的最小值为1.······································
································12分(22)····················································································
·················本小题主要考查参数方程、极坐标方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想等.满分10分.(Ⅰ)曲线C的方程4cos6sin,∴24cos6sin
,∴2246xyxy,即C的直角坐标方程为222313xy·········································4分(Ⅱ)设点MN,对应的参数分别为12tt,.把直线2322
12xtyt(t为参数)代入C得,2222121322tt,整理得,23280tt.23232500,1232tt,128tt,
∴12tt,为异号,··········8分又∵点3,1A在直线l上,∴21212121245052AMANtttttttt.···················10分(23)·····
································································································本小题主要考查绝对值不等式等基础知识,考查运算求
解能力、推理论证能力,考查化归与转化思想、分类与整合思想、数形结合思想等.满分10分.(Ⅰ)当2a时,21211fxxx,当12x„时,不等式122121fxxx成立;当1122x时,122141fxxxx
,1124x;·11·当12x…时,212121fxxx不成立,综上,不等式1fx的解集为14xx.············································5分(Ⅱ)当1,2x时,1fxx
化为2111xaxx,321xax,23132,xaxx1333axx,13yx在1,2单调递减,故522y;33yx在1,2单调递增,故302y
,所以20a剟,所以a的取值范围是2,0.··································································10分