【文档说明】2021年人教版高中数学选择性必修第一册第1章习题课件:《章末检测试卷(一)》(含答案).ppt,共(41)页,1.667 MB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-53965.html
以下为本文档部分文字说明:
第一章空间向量与立体几何一、单项选择题(本大题共8小题,每小题5分,共40分)1.在长方体ABCD-A1B1C1D1中,AB→+BC→+CC1—→-D1C1—→等于A.AD1—→B.AC1—→C.AD→D.AB→√11223344556677889910101111121213
13141415151616171718181919202021212222解析AB→+BC→+CC1—→-D1C1—→=AC1—→+C1D1—→=AD1—→.2.若直线l的方向向量为a,平面α的法向量为μ,则能使l∥α的是A.a=(1,0,0
),μ=(-2,0,0)B.a=(1,3,5),μ=(1,0,1)C.a=(0,2,1),μ=(-1,0,1)D.a=(1,-1,3),μ=(0,3,1)√112233445566778899101011111212
1313141415151616171718181919202021212222解析由l∥α,故a⊥μ,即a·μ=0,故选D.3.已知棱长为1的正方体ABCD-A1B1C1D1的上底面A1B1C1D1的中心为O1,则的值为A.-1B.0C.1D.2解
析由于AO1—→=AA1—→+A1O1—→=AA1—→+12(A1B1—→+A1D1—→)=AA1—→+12(AB→+AD→),√AO1—→·AC→而AC→=AB→+AD→,则AO1—→·AC→=AA1—→+12
(AB→+AD→)·(AB→+AD→)=12(AB→+AD→)2=1.11223344556677889910101111121213131414151516161717181819192020212122224.已知△ABC的三个顶点为A(3,3,2),B
(4,-3,7),C(0,5,1),则BC边上的中线长为A.2B.3C.4D.5√解析设BC边的中点为D,则AD→=12(AB→+AC→)=(-1,-2,2),所以|AD→|=1+4+4=3.11223344556
677889910101111121213131414151516161717181819192020212122225.若向量a=(x,4,5),b=(1,-2,2),且a与b的夹角的余弦值为,则x等于A.3B.-3C.-11D.
3或-11√26解析因为a·b=(x,4,5)·(1,-2,2)=x-8+10=x+2,且a与b的夹角的余弦值为26,所以26=x+2x2+42+52×1+4+4,解得x=3或-11(舍去),故选A.1
1223344556677889910101111121213131414151516161717181819192020212122226.平面α的法向量u=(x,1,-2),平面β的法向量ν=-1,y,12,已知α∥β,则x+y等于A.154B.174C.3D.5
2解析由题意知,∵α∥β,∴u=λν,√即x=-λ,1=λy,-2=12λ,解得λ=-4,y=-14,x=4,∴x+y=4-14=154.112233445566778899101011111212
13131414151516161717181819192020212122227.已知平面α内两向量a=(1,1,1),b=(0,2,-1)且c=ma+nb+(4,-4,1).若c为平面α的法向量,则m,
n的值分别为A.-1,2B.1,-2C.1,2D.-1,-2√解析c=ma+nb+(4,-4,1)=(m,m,m)+(0,2n,-n)+(4,-4,1)=(m+4,m+2n-4,m-n+1),由c为平面α的法向量,得c·a=0
,c·b=0,即3m+n+1=0,m+5n-9=0,解得m=-1,n=2.11223344556677889910101111121213131414151516161717181819192020212122228.如图,四棱锥P-ABCD中
,PB⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA,则平面ABE与平面BED的夹角的余弦值为A.23B.66C.33D.631122334455667788991010111112
121313141415151616171718181919202021212222√解析如图,以B为坐标原点,分别以BC,BA,BP所在直线为x轴,y轴,z轴,建立空间直角坐标系,则B(0,0,0),A(0,3
,0),P(0,0,3),D(3,3,0),E(0,2,1),∴BE→=(0,2,1),BD→=(3,3,0).1122334455667788991010111112121313141415151616171718181919202021212222设平面BED的法向量为n=(x,y,z)
,则n·BE→=2y+z=0,n·BD→=3x+3y=0,取z=1,得n=12,-12,1.又平面ABE的法向量为m=(1,0,0),∴cos〈n,m〉=m·n|n||m|=1262×1=66.112233445566
7788991010111112121313141415151616171718181919202021212222∴平面ABE与平面BED的夹角的余弦值为66.A.(4,-2,2)B.(-2,2,4)C.(-4,2,-2)D.(2,-2,4)二、多项选择题(本大题共4小题,每小题
5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知空间三点A(1,0,3),B(-1,1,4),C(2,-1,3).若AP→∥BC→,且|AP→|=14,则点P的坐标为√1122334455667788991010111112121313
141415151616171718181919202021212222√解析设AP→=(3λ,-2λ,-λ).又|AP→|=14,∴(3λ)2+(-2λ)2+(-λ)2=14,解得λ=±1,∴AP→=(3,-2,-1)或AP→=(-3,2,1).设点P的坐标为(x,y,z),则AP→
=(x-1,y,z-3),∴x-1=3,y=-2,z-3=-1或x-1=-3,y=2,z-3=1,解得x=4,y=-2,z=2或x=-2,y=2,z=4.故点P的坐标为(4,-2,2)或(-2,2,4).1
12233445566778899101011111212131314141515161617171818191920202121222210.在三棱锥A-BCD中,DA,DB,DC两两垂直,且DB=DC,
E为BC的中点,则直线AE和BCA.垂直B.相交C.共面D.异面解析因为E为BC的中点,所以AE→=DE→-DA→=12(DB→+DC→)-DA→,√√√因为在三棱锥A-BCD中,DA,DB,DC两两垂直,且DB=DC,所以AE→·BC→=12
(DB→+DC→)-DA→·(DC→-DB→)=12(DC→2-DB→2)=0.所以AE和BC垂直.又AE,BC显然相交,故选ABC.11223344556677889910101111121213131414151516161
7171818191920202121222211.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则A.l∥αB.l⊥αC.l⊂αD.l与α相交√1122334455667788991010111112121313141415151616171718181
919202021212222√解析∵a=(1,0,2),n=(-2,0,-4),∴n=-2a,即a∥n,∴l⊥α.12.已知直线l过点P(1,0,-1)且平行于向量a=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量可能是A.
(1,-4,2)B.14,-1,12C.-14,1,-12D.(0,-1,1)√√√解析因为PM→=(0,2,4),直线l平行于向量a,若n是平面α的一个法向量,则必须满足
PM→与法向量垂直,把选项代入验证,只有选项D不满足,故选ABC.1122334455667788991010111112121313141415151616171718181919202021212222三、填空题(本大题共4小题,
每小题5分,共20分)13.已知正方体ABCD-A1B1C1D1中,若点F是侧面CD1的中心,且AF→=AD→+mAB→-nAA1→,则m=________.12解析由于AF→=AD→+DF→=AD→+12(DC
→+DD1—→)=AD→+12AB→+12AA1—→,所以m=12,n=-12.112233445566778899101011111212131314141515161617171818191920202121222214.设平面α的法向量为m=(1,2,-2),平面β的法向量为n=(-2
,-4,k),若α∥β,则k=_____.解析由α∥β得1-2=2-4=-2k,解得k=4.1122334455667788991010111112121313141415151616171718181919202021212222415.在空间直角坐标系中有直三棱柱ABC-A1B1
C1,CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为______.55解析不妨设CB=1,则B(0,0,1),A(2,0,0),C1(0,2,0),B1(0,2,1).∴BC1—→=(0,2,-1),AB1—→=(-
2,2,1).cos〈BC1—→,AB1—→〉=BC1—→·AB1—→|BC1—→|·|AB1—→|=0+4-15×3=55.112233445566778899101011111212131314141515
161617171818191920202121222216.在棱长为1的正方体ABCD-A1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.(1)若P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是________;(2)|A1
P|的最小值为________.(本题第一空2分,第二空3分)3241122334455667788991010111112121313141415151616171718181919202021212222平行解析(1)以D为原点,以DA,DC,DD1所在的直线为x,y,
z轴,建立空间直角坐标系如图所示,A1(1,0,1),E0,1,12,B(1,1,0),因为P,Q均在平面A1B1C1D1内,所以设P(a,b,1),Q(m,n,1),A1E—→=-1,1,-12,BP→=(a-1,b-1,1),BQ→=(m-
1,n-1,1),因为BP⊥A1E,BQ⊥A1E,所以BP→·A1E—→=-(a-1)+(b-1)-12=0,BQ→·A1E—→=-(m-1)+(n-1)-12=0,解得b-a=12,n-m=12,1122334455667788991
010111112121313141415151616171718181919202021212222PQ→=(n-b,n-b,0),BD→=(-1,-1,0),所以PQ与BD的位置关系是平行.(2)由(1)可知:b-a
=12,|A1P—→|=(a-1)2+b2=(a-1)2+a+122=2a2-a+54=2a-142+98,当a=14时,|A1P—→|有最小值,最小值为324.112233445566778899101011111
2121313141415151616171718181919202021212222四.解答题(本大题共6小题,共70分)17.(10分)已知a=(x,4,1),b=(-2,y,-1),c=(3,-2,z),a∥b,b⊥c,求:
(1)a,b,c;解因为a∥b,所以x-2=4y=1-1,解得x=2,y=-4,则a=(2,4,1),b=(-2,-4,-1).又b⊥c,所以b·c=0,即-6+8-z=0,解得z=2,于是c=(3,-2,2).1122334455667788991010111112121313
141415151616171718181919202021212222解由(1)得a+c=(5,2,3),b+c=(1,-6,1),设a+c与b+c的夹角为θ,(2)a+c与b+c夹角的余弦值.因为cosθ=5-12+338·38=-21
9.1122334455667788991010111112121313141415151616171718181919202021212222所以a+c与b+c夹角的余弦值为-219.18.(12分)如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四
边形ABCD中,CD∥AB,∠ABC=∠BCD=90°,AB=4,CD=1,点M在PB上,且PB=4PM,∠PBC=30°,求证:CM∥平面PAD.112233445566778899101011111212131314
1415151616171718181919202021212222证明建立如图所示的空间直角坐标系Cxyz,∵∠PBC=30°,PC=2,∴BC=23,PB=4,∴D(1,0,0),C(0,0,0),A(4,23,0),P(0,0,2),∵PB=4PM,∴P
M=1,M0,32,32,∴CM→=0,32,32,DP→=(-1,0,2),DA→=(3,23,0),设平面PAD的一个法向量n=(x,y,z),则n·DP→=0,n·DA→=0,即-x+2z=0,3x+23y
=0,1122334455667788991010111112121313141415151616171718181919202021212222令x=1,解得y=-32,z=12,故n=1,-32,12,112233445566778899101011111212
1313141415151616171718181919202021212222又∵CM→·n=0,32,32·1,-32,12=0,∴CM→⊥n,又CM⊄平面PAD,∴CM∥平面PAD.1
9.(12分)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.112233445566778899101011111212131314141
5151616171718181919202021212222(1)求证:BM∥平面ADEF;证明∵平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,AD⊥ED,ED⊂平面ADEF,∴ED⊥平面ABCD.以D为原点
,DA→,DC→,DE→分别为x轴,y轴,z轴的正方向建立如图所示空间直角坐标系.则D(0,0,0),A(2,0,0),B(2,2,0),C(0,4,0),E(0,0,2),F(2,0,2).∵M为EC的中点,∴M(0,2,1),则BM→
=(-2,0,1),AD→=(-2,0,0),AF→=(0,0,2),∴BM→=AD→+12AF→,故BM→,AD→,AF→共面.又BM⊄平面ADEF,∴BM∥平面ADEF.11223344556677889910101111
12121313141415151616171718181919202021212222(2)求证:BC⊥平面BDE.证明BC→=(-2,2,0),DB→=(2,2,0),DE→=(0,0,2),11223344556677889910101111
12121313141415151616171718181919202021212222∵BC→·DB→=-4+4=0,∴BC⊥DB.又BC→·DE→=0,∴BC⊥DE.又DE∩DB=D,∴BC⊥平面BDE.20.(12分)在三棱柱ABC-A1B1C1中,底面
ABC为正三角形,且侧棱AA1⊥底面ABC,且底面边长与侧棱长都等于2,O,O1分别为AC,A1C1的中点,求平面AB1O1与平面BC1O间的距离.112233445566778899101011111212131314141515161617171818191920
2021212222解如图,连接OO1,根据题意,OO1⊥底面ABC,则以O为原点,分别以OB,OC,OO1所在的直线为x,y,z轴建立空间直角坐标系.∵AO1∥OC1,OB∥O1B1,AO1∩O1B1=O1,OC1∩OB=O,∴平面AB1O1∥平面BC1
O.∴平面AB1O1与平面BC1O间的距离即为点O1到平面BC1O的距离.∵O(0,0,0),B(3,0,0),C1(0,1,2),O1(0,0,2),∴OB→=(3,0,0),OC1—→=(0,1,2),OO1—→=(0,0,2),1122334455667788991010111112
121313141415151616171718181919202021212222设n=(x,y,z)为平面BC1O的法向量,则n·OB→=0,n·OC1—→=0,即x=0,y+2z=0,∴可取n=(0,2,-1).
点O1到平面BC1O的距离记为d,则d=|n·OO1—→||n|=25=255.∴平面AB1O1与平面BC1O间的距离为255.112233445566778899101011111212131314141515161617171818191920
202121222221.(12分)如图,在空间直角坐标系Dxyz中,四棱柱ABCD-A1B1C1D1为长方体,AA1=AB=2AD,点E,F分别为C1D1,A1B的中点,求平面B1A1B与平面A1BE夹角的余弦值.11223344556677
88991010111112121313141415151616171718181919202021212222解设AD=1,则A1(1,0,2),B(1,2,0),C1(0,2,2),D1(0,0,2),因为E,F分别为C1D1,A1
B的中点,所以E(0,1,2),F(1,1,1),所以A1E—→=(-1,1,0),A1B—→=(0,2,-2),设m=(x,y,z)是平面A1BE的法向量,则A1E—→·m=0,A1B—→·m=0,所以-x+y=0,2y-2z=0,所以y=x,y=z,取x
=1,则y=z=1,所以平面A1BE的一个法向量为m=(1,1,1).1122334455667788991010111112121313141415151616171718181919202021212222又DA⊥平面A1B1B,所以DA→=(1,0,0)是平面A1B1B的一个法向量,
所以cos〈m,DA→〉=m·DA→|m||DA→|=13=33,所以平面B1A1B与平面A1BE夹角的余弦值为33.112233445566778899101011111212131314141515161617171818191920202121222222.(12分)如
图所示,已知几何体EFG-ABCD,其中四边形ABCD,CDGF,ADGE均为正方形,且边长为1,点M在边DG上.112233445566778899101011111212131314141515161617171
8181919202021212222(1)求证:BM⊥EF;证明因为四边形ABCD,CDGF,ADGE均为正方形,所以GD⊥DA,GD⊥DC,AD⊥CD,又DA∩DC=D,所以GD⊥平面ABCD.以点D为坐标原点,建立如图所示的空间直角坐标系Dxyz,则B(1,1,0),E(1
,0,1),F(0,1,1).因为点M在边DG上,故可设M(0,0,t)(0≤t≤1).可得MB→=(1,1,-t),EF→=(-1,1,0),112233445566778899101011111212
1313141415151616171718181919202021212222所以MB→·EF→=1×(-1)+1×1+(-t)×0=0,所以BM⊥EF.(2)是否存在点M,使得直线MB与平面BEF所成的角为45°?若存在,确定点
M的位置;若不存在,请说明理由.1122334455667788991010111112121313141415151616171718181919202021212222解假设存在点M,使得直线MB与平面BEF所成的角为45°.设平面BE
F的法向量为n=(x,y,z),因为BE→=(0,-1,1),BF→=(-1,0,1),所以n·BE→=0,n·BF→=0,所以-y+z=0,-x+z=0,令z=1,得x=y=1,所以n=(1,1
,1)为平面BEF的一个法向量,所以cos〈n,MB→〉=n·MB→|n||MB→|=2-t3×2+t2.因为直线MB与平面BEF所成的角为45°,11223344556677889910101111121213131414151516161717181819192020212
12222所以sin45°=|cos〈n,MB→〉|,1122334455667788991010111112121313141415151616171718181919202021212222所以2-t3×2+t2=22,解得t=
-4±32.又0≤t≤1,所以t=32-4.所以存在点M(0,0,32-4).当点M位于DG上,且DM=32-4时,直线MB与平面BEF所成的角为45°.