【文档说明】华东师大版八年级数学下册18平行四边形课题平行四边形的判定2学案.doc,共(3)页,68.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-46712.html
以下为本文档部分文字说明:
课题平行四边形的判定(2)【学习目标】1.让学生掌握用一组对边平行且相等来判定平行四边形的方法.2.让学生学会综合运用平行四边形的四种判定方法和性质来证明问题.【学习重点】平行四边形各种判定方法及其应用,特别是根据不同条件能正确地选择判定方法.【学习难点】平行四边形的判定定理与性质定理的综合应
用.行为提示:创设问题情景导入,激发学生的求知欲望.行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.知识链接:1.定理:通过证明正确的命题.2.常用辅助线:连接平行四边形的对角线.解题思路:本题证法比
较多,但是哪一种证法最为简单昵?因为题中有一条对角线,所以可以从与对角线有关的判定试一下.方法指导:对于范例2,可以画一个草图,这样一目了然.情景导入生成问题【旧知回顾】1.用定义法证明一个四边形是平行四边形时,要什
么条件?答:两组对边分别平行.2.用以前所学的判定定理判定一个四边形是平行四边形的条件是什么?答:(1)两组对边分别相等;(2)一组对边平行且相等.3.平行四边形的对角线互相平分的逆命题如何表达?是否是真命题?答:对角线互相平分的四边形是平行
四边形.是真命题.自学互研生成能力知识模块一对角线互相平分的四边形是平行四边形【自主探究】1.“对角线互相平分的四边形是平行四边形”的条件是:__四边形的对角线互相平分__;结论是:__四边形是平行四边形__.这是一个真命题.可用尺规作图法进行验证.2.平行四边形的判定定理3:对
角线互相平分的四边形是平行四边形.(验证)已知,如图,在四边形ABCD中,对角线AC和BD相交于点O,且OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中.∵OA=OC,∠AOB=∠COD,OB=OD,∴△AOB≌△COD,∴AB=CD,∠OAB=∠OCD,
∴AB∥CD,∴四边形ABCD是平行四边形.【合作探究】范例1:在▱ABCD中,点E,F是对角线AC上的两点,且AE=CF.求证:四边形BFDE是平行四边形.分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)一组对边平行且相等;(3)平行四边形的定义:两组对边分
别平行;(4)对角线互相平分.(较简单的)证明:连结BD,交AC于点O.∵四边形ABCD是平行四边形,∴OB=OD,OA=OC.又∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形BFDE是平行四边形.范例2:四边形ABCD中,对角线AC与BD交于点O,下列
条件不能判定这个四边形是平行四边形的是(D)A.OA=OC,OB=ODB.AD∥BC,AB∥CDC.AB=DC,AD=BCD.AB∥DC,AD=BC学习笔记:1.平行四边形一共有四种判定方法:定义法;两组对边相等;一组对边平行且相等;对角线互相平分.2.根据题目条件选取适当的证明方法最为重要
.行为提示:教师结合各组反馈的疑难问题分配任务,各组展示过程中,教师引导其他组进行补充、纠错、释疑,然后进行总结评比.学习笔记:检测的目的在于让学生熟练运用平行四边形的判定与性质解题.知识模块二几种判定方法的灵活运用【合作探究】范例3:如图,在▱ABCD中,点
F,H分别在边AB,CD上,且BF=DH.求证:AC和HF互相平分.分析:因为AC和HF是四边形AFCH的对角线,所以要证明AC和HF互相平分,只需证明四边形AFCH是平行四边形.证明:分别连结AH,CF.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵
BF=DH,∴AB-BF=CD-DH,即AF=CH,∴四边形AFCH是平行四边形,∴AC和HF互相平分.范例4:如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.分析:根据∠A=∠C,
∠B=∠D,可以证明四边形ABCD的两组对边分别平行,从而根据定义可得四边形ABCD是平行四边形.证明:在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°,∠A=∠C,∠B=∠D,∴2(∠A+∠B)=360°,即∠A+∠B=180°,∴AD∥CB,同理可证:AB∥CD,∴四边形A
BCD是平行四边形.交流展示生成新知1.将阅读教材时“生成的新问题“和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“
生成新知”.知识模块一对角线互相平分的四边形是平行四边形知识模块二几种判定方法的灵活运用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:__________
______________________________________________________________2.存在困惑:___________________________________________________
_____________________