【文档说明】2022年中考数学一轮复习习题精选《与圆的有关计算》(含答案).doc,共(19)页,843.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-41677.html
以下为本文档部分文字说明:
一、选择题1.(市朝阳区一模)如图,正方形ABCD的边长为2,以BC为直径的半圆与对角线AC相交于点E,则图中阴影部分的面积为(A)4125(B)4123(C)2125(D)4125答案D2.(东城区一模)如图,O是等边△ABC的外
接圆,其半径为3.图中阴影部分的面积是A.πB.3π2C.2πD.3π答案D3、(朝阳区第一学期期末检测)如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A’B’C,则
图中阴影部分的面积为(A)2(B)2π(C)4(D)4π答案:B4.(大兴第一学期期末)-在半径为12cm的圆中,长为4cm的弧所对的圆心角的度数为A.10B.60C.90D.120答案:B5.(东城第一学期期末)A
,B是O上的两点,OA=1,AB的长是1π3,则∠AOB的度数是A.30B.60°C.90°D.120°答案:B6.(通州区第一学期期末)已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是()A.6B.πC.3
D.32答案:D7.(西城区第一学期期末)圆心角为60,且半径为12的扇形的面积等于().A.48πB.24πC.4πD.2π答案:BA'B'BCA8.(朝阳区二模)如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB
于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为(A)41312(B)4912(C)4136(D)6答案:A二、填空题9.(海淀区二模)如图,AB是⊙O的直径,C
是⊙O上一点,6OA,30B,则图中阴影部分的面积为.答案:6π10.(年昌平区第一学期期末质量抽测)如图,⊙O的半径为3,正六边形ABCDEF内接于⊙O,则劣弧AB的长为.答案:π11.(大兴第一学期期末)圆心角为160°的扇形
的半径为9cm,则这个扇形的面积是cm2.答案:36π.12.(房山区第一学期检测)如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形.若开口∠1=60°,半径为6,则这个“吃豆小人”(阴影图形)的面积为.OFEDCBA1OCBA答案:5π13.(丰台区第一学期期末)半径为2的圆中,
60°的圆心角所对的弧的弧长为.答案:2π314.(年海淀区第一学期期末)若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为.答案:615.(怀柔区第一学期期末)在学校的花园里有一如图所示的花坛,它是由一个正三角形和圆心分别在正三角形顶
点、半径为1米的三个等圆组成,现在要在花坛正三角形以外的区域(图中阴影部分)种植草皮.草皮种植面积为米2.答案:16.(密云区初三(上)期末)扇形半径为3cm,弧长为cm,则扇形圆心角的度数为___________________.答案:6017.(平谷区第一学
期期末)圆心角为120°,半径为6cm的扇形的弧长是cm(结果不取近似值).答案:4π18.(石景山区第一学期期末)如图,扇形的圆心角60AOB,半径为3cm.若点C、D是弧AB的三等分点,则图中所有阴影部分的面积之和是________cm2.答案:2π19.(西城区二模)如
图,等边三角形ABC内接于⊙O,若⊙O的半径为2,则图中阴影部分的面积等于.答案:43三、解答题20.(年昌平区第一学期期末质量抽测)如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C
作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tanD=34,求AE的长.答案:(1)证明:连接OC,∵点C为弧BF的中点,∴弧BC=弧CF.∴BACFAC
.„„„„„1分∵OAOC,∴OCAOAC.∴OCAFAC.„„„„„„„„2分∵AE⊥DE,∴90CAEACE.∴90OCAACE.∴OC⊥DE.∴DE是⊙O的切线.„„„„„„„„3分(2)解:∵tanD=
OCCD=34,OC=3,∴CD=4.„„„„„„„„„„„4分∴OD=22OCCD=5.∴AD=OD+AO=8.„„„„„„„„„„„5分∵sinD=OCOD=AEAD=35,∴AE=245.„„„„„„„„„„„6分21.(顺义区初三上学期期末)制
造弯形管道时,经常要先按中心线计算“展直长度”,再备OFEBCDAOFEBCDA料.下图是一段管道,其中直管道部分AB的长为3000mm,弯形管道部分BC,CD弧的半径都是1000mm,∠O=∠O’=9
0°,计算图中中心虚线的长度.答案:20.901000500180180nrl…………………………….…….……….3分中心虚线的长度为3000500230001000…………………4分=300010003.14=6140……………………
………………………..…5分22.(燕山地区一模)如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线(2)当BE=3,cosC=52时,求⊙O的半径.解:
(1)连结OM.∵BM平分∠ABC∴∠1=∠2又OM=OB∴∠2=∠3∴OM∥BC„„„„„„„„„„„„„2′AE是BC边上的高线∴AE⊥BC,∴AM⊥OM∴AM是⊙O的切线„„„„„„„„„„„„„3′E
OMGFABC(2)∵AB=AC∴∠ABC=∠CAE⊥BC,∴E是BC中点∴EC=BE=3∵cosC=52=ACEC∴AC=25EC=215„„„„„„„„„„„„„4′∵OM∥BC,∠AOM=∠ABE∴△AOM∽△ABE∴ABAOBEOM又∠ABC=∠C∴∠AOM=∠C在Rt△AOM
中cos∠AOM=cosC=5252AOOM∴AO=OM25AB=OM25+OB=OM27而AB=AC=215∴OM27=215OM=715∴⊙O的半径是715„„„„„„„„„„„„„6′23.(通州区一模)答案321OM
GFABC24.(延庆区初三统一练习)如图,AB是⊙O的直径,D是⊙O上一点,点E是AD的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.(1)求证:ABBC;(2)如果AB=5,1tan2FA
C,求FC的长.证明:(1)连接BE.OFEDCBA∵AB是直径,∴∠AEB=90°.∴∠CBE+∠ECB=90°∠EBA+∠EAB=90°.∵点E是AD的中点,∴∠CBE=∠EBA.∴∠ECB=∠EAB.……1分∴AB=BC.……2分(2)∵FA作⊙O的切线,∴
FA⊥AB.∴∠FAC+∠EAB=90°.∵∠EBA+∠EAB=90°,∴∠FAC=∠EBA.∵1tan2FACAB=5,∴5AE25BE.……4分过C点作CH⊥AF于点H,∵AB=BC∠AEB=90°,∴AC=2AE=25.
∵1tan2FAC,∴CH=2.……5分∵CH∥ABAB=BC=5,∴255FCFC.∴FC=310.…6分25.(西城区九年级统一测试)如图,⊙O的半径为r,ABC△内接于⊙O,15BAC,30ACB
,D为CB延长线上一点,AD与⊙O相切,切点为A.(1)求点B到半径OC的距离(用含r的式子表示).(2)作DHOC于点H,求ADH的度数及CBCD的值.HABCDEFOABCDEFOAOBCD解:(1)如图4,作BE⊥OC于点E.∵在⊙O的内接△ABC中,∠BAC=15,∴
=230BOCBAC.在Rt△BOE中,∠OEB=90,∠BOE=30,OB=r,∴22OBrBE.∴点B到半径OC的距离为2r.„„„„„„„„„„„„„„„„„2分(2)如图4,连接OA.由BE⊥OC,DH⊥OC,可
得BE∥DH.∵AD与⊙O相切,切点为A,∴AD⊥OA.„„„„„„„„„„„„3分∴90OAD.∵DH⊥OC于点H,∴90OHD.∵在△OBC中,OB=OC,∠BOC=30,∴180752BOCOCB
.∵∠ACB=30,∴45OCAOCBACB.∵OA=OC,∴45OACOCA.∴180290AOCOCA.∴四边形AOHD为矩形,∠ADH=90.„„„„„„„„„„„„„„4分∴DH=A
O=r.∵2rBE,∴2DBEH.∵BE∥DH,∴△CBE∽△CDH.∴12CBBEDDHC.„„„„„„„„„„„„„„„„„„„„„„„5分图426.(平谷区中考统一练习)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结B
C,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,3cos5B,求DE的长.DEOACB(1)证明:∵AC是⊙O的切线,∴∠BAC=90°.···················
··················································1∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC,····································
··································2∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C.····································································3(2)解:连结AD.∵AB为直
径作⊙O,∴∠ABD=90°.∵AB=6,3cos5B,∴BD=185.·························4在Rt△ABC中,AB=6,3cos5B,∴BC=10.∵点E是BC边的中点,∴BE=5.·····························
5∴75DE.························627.(顺义区初三练习)如图,等腰△ABC是⊙O的内接三角形,AB=AC,过点A作BC的平行线AD交BO的延长线于点D.(1)求证:AD是⊙O
的切线;(2)若⊙O的半径为15,sin∠D=35,求AB的长.DEOACBDAOBC(1)证明:连接AO,并延长交⊙O于点E,交BC于点F.∵AB=AC,∴ABAC.∴AE⊥BC.∵AD∥BC,∴AE⊥AD.∴AD是⊙O的切线.„„„„„2分(2)解法1:∵AD∥B
C,∴∠D=∠1.∵sin∠D=35,∴sin∠1=35.∵AE⊥BC,∴OFOB=35.∵⊙O的半径OB=15,∴OF=9,BF=12.∴AF=24.∴AB=125.„„„„„„„„„„„„„„„„„„„„„5分3解法2:过B作BH⊥DA交DA延
长线于H.∵AE⊥AD,sin∠D=35,∴OAOD=35.∵⊙O的半径OA=15,∴OD=25,AD=20.∴BD=40.∴BH=24,DH=32.∴AH=12.∴AB=125.„„„„„„„„„„„„„„„„„„„„„5分28.(石景山区初三毕
业考试)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.(1)求证:12CBEF;(2)若⊙O的半径是23,点D是OC中点,
15CBE°,求线段EF的长.1EFDCOABHEFDCOAB(1)证明:连接OE交DF于点H,∵EF是⊙O的切线,OE是⊙O的半径,∴OE⊥EF.∴190F°.∵FD⊥OC,∴3290.∵12
,∴3F.„„„„„„1分∵132CBE,∴12CBEF.„„„„„„2分(2)解:∵15CBE°,∴3230FCBE°.∵⊙O的半径是23,点D是OC中点,∴3OD.在RtODH中,cos3ODOH,∴2OH.„„„„„„3分∴2
32HE.在RtFEH中,tanEHFEF.„„„„„„4分∴3623EFEH.„„„„„„5分29.(市朝阳区一模)如图,在△ABC中,AB=BC,∠A=45°,以AB为直径的⊙O交CO于点D.(1)求证:BC是⊙O
的切线;(2)连接BD,若BD=m,tan∠CBD=n,写出求直径AB的思路.FDEBOACH321FDEBOAC解(1)证明:∵AB=BC,∠A=45°,∴∠ACB=∠A=45°.∴∠ABC=90°.„„
„„„„„„„„„„„„„„„„„„„„1分∵AB是⊙O的直径,∴BC是⊙O的切线.„„„„„„„„„„„„„„„„„„„2分(2)求解思路如下:①连接AD,由AB为直径可知,∠ADB=90°,进而可知∠BAD=∠CBD;„„3分②由BD=m,tan∠
CBD=n,在Rt△ABD中,可求AD=mn;„„„„„„„„„4分③在Rt△ABD中,由勾股定理可求AB的长.„„„„„„„„„„„„„„5分30.(市朝阳区综合练习(一))如图,在⊙O中,C,D分别为半径OB,弦AB的中点,连接CD
并延长,交过点A的切线于点E.(1)求证:AE⊥CE.(2)若AE=,sin∠ADE=31,求⊙O半径的长.(1)证明:连接OA,∵OA是⊙O的切线,∴∠OAE=90º.„„„„„„„„„„„„1分∵C,D分别为半径OB,弦AB的中点,∴CD为△AOB的中位线.
∴CD∥OA.∴∠E=90º.∴AE⊥CE.„„„„„„„„„„„„„2分(2)解:连接OD,∴∠ODB=90º.„„„„„„„„„„„„„„„„„„3分∵AE=,sin∠ADE=31,在Rt△AED中,23sinADEAEAD.∵CD∥OA,∴∠1=∠ADE.在Rt△OAD
中,311sinOAOD.„„„„„„„„„4分12ECBAODEFHBODAPCEFHBODAPC设OD=x,则OA=3x,∵222OAADOD,∴222323xx.解得231x,232x(舍).∴2
93xOA.„„„„„„„„„„„„„„„5分即⊙O的半径长为29.31.(门头沟区初三综合练习)如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC
交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=35,请求出AC的长.(1)证明:连接OC,∵射线DC切⊙O于点C,∴∠OCP=90°∵DE⊥AP,∴∠DEP=90°∴∠P
+∠D=90°,∠P+∠COB=90°∴∠COB=∠D„„„„„„„1分∵OA=OC,∴∠A=∠OCA∵∠COB=∠A+∠OCA∴∠COB=2∠A∴∠D=2∠A„„„„„„„2分(2)解:由(1)可知:∠OCP=90°,∠COP=∠D,∴cos∠COP=cos∠D=35,„„„„
„„„3分∵CH⊥OP,∴∠CHO=90°,设⊙O的半径为r,则OH=r﹣2.在Rt△CHO中,cos∠HOC=OHOC=2rr=35,∴r=5,„„„„„„„4分∴OH=5﹣2=3,∴由勾股定理可知:CH=4,∴AH=AB﹣HB=10﹣2=8.在Rt△AHC中,∠CHA=90°
,∴由勾股定理可知:AC=45.„„„„„„„5分32.(东城区一模)如图,AB为O的直径,点C,D在O上,且点C是BD的中点.过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是O的切线;(2)连接BC.若AB=5,BC=3,求线段AE的长.(1)证明:连接OC.∵CDCB
∴∠1=∠3.∵OAOC,∴∠1=∠2.∴∠3=∠2.∴AEOC∥.∵AEEF⊥,∴OCEF⊥.∵OC是O的半径,∴EF是O的切线.----------------------2分(2)∵AB为O的直径,∴∠ACB=90°.
根据勾股定理,由AB=5,BC=3,可求得AC=4.∵AEEF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AEACACAB.∴445AE.GCDEBOAFH∴165AE.-----------------
-----5分33.(怀柔区一模)如图,AC是⊙O的直径,点B是⊙O内一点,且BA=BC,连结BO并延长线交⊙O于点D,过点C作⊙O的切线CE,且BC平分∠DBE.(1)求证:BE=CE;(2)若⊙O的直径长8,sin∠BCE=45,求BE的长.23.解:(1)∵BA=BC,AO=CO,∴BD
⊥AC.∵CE是⊙O的切线,∴CE⊥AC.∴CE∥BD.……………………………………1分∴∠ECB=∠CBD.∵BC平分∠DBE,∴∠CBE=∠CBD.∴∠ECB=∠CBE.∴BE=CE.…………………………………………2分(2)解:作
EF⊥BC于F.…………………………3分∵⊙O的直径长8,∴CO=4.∴sin∠CBD=sin∠BCE=45=OCBC.…………………………………………………………4分∴BC=5,OB=3.∵BE=CE,∴BF=
1522BC.∵∠BOC=∠BFE=90°,∠CBO=∠EBF,∴△CBO∽△EBF.∴BEBFBCOB.∴BE=256.……………………………………………………………………………………5分34.(房山区一模)如图,AB、BF分别是⊙O的直径
和弦,弦CD与AB、BF分别相交于点E、G,过点F的切线HF与DC的延长线相交于点H,且HF=HG.(1)求证:AB⊥CD;(2)若sin∠HGF=43,BF=3,求⊙O的半径长.EDOACB第23题图
FEDOACBEDOACB解:(1)连接OF.∵OF=OB∴∠OFB=∠B∵HF是⊙O的切线∴∠OFH=90°„„„„„„„„„„„„„„„„„„„„„„„„„1分∴∠HFB+∠OFB=90°∴∠B+∠HFB=90°∵HF=HG∴∠HFG=∠HGF
又∵∠HGF=∠BGE∴∠BGE=∠HFG∴∠BGE+∠B=90°∴∠GEB=90°∴AB⊥CD„„„„„„„„„„„„„„„„„„„„„„„„„„„2分(2)连接AF∵AB为⊙O直径∴∠AFB=90°„„„„„„„„„„„„„„„„„„„„„„„„„3分∴∠A+∠B=9
0°∴∠A=∠BGE又∵∠BGE=∠HGF∴∠A=∠HGF„„„„„„„„„„„„„„„„„„„„„„„„„4分∵sin∠HGF=34∴sinA=34∵∠AFB=90°,BF=3∴AB=4∴OA=OB=2„„„„„„„„„„„„„„
„„„„„„„„„„„5分即⊙O的半径为235.(丰台区一模)如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O的切线交BC的延长线于点F.(1)求证:EFED;(2)如果半径为5,
cos∠ABC=35,求DF的长.(1)证明:∵BD平分∠ABC,∴∠1=∠2.∵DE∥AB,∴∠2=∠3.∴∠1=∠3.HGDCBOAEFOABCEDF312FDECBAO∵BC是⊙O的切线,∴∠BDF=90°.∴∠1+∠F=90°,∠3+∠EDF=90°.∴∠F=∠EDF.∴EF
DE.…….…….……………2分(2)解:连接CD.∵BD为⊙O的直径,∴∠BCD=90°.∵DE∥AB,∴∠DEF=∠ABC.∵cos∠ABC=35,∴在Rt△ECD中,cos∠DEC=CEDE=35.设CE=3x,则DE=5x.由
(1)可知,BE=EF=5x.∴BF=10x,CF=2x.在Rt△CFD中,由勾股定理得DF=25x.∵半径为5,∴BD10.∵BF×DC=FD×BD,∴1041025xxx,解得52x.∴DF=
25x=5.…….…….……………5分(其他证法或解法相应给分.)36.(西城区二模)如图,AB是⊙O的直径,C是圆上一点,弦CD⊥AB于点E,且DC=AD.过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线交AB的延长线于点G.(1)求证:FG
与⊙O相切;(2)连接EF,求tanEFC的值.(1)证明:如图6,连接OC,AC.∵AB是⊙O的直径,弦CD⊥AB于点E,∴CE=DE,AD=AC.∵DC=AD,∴DC=AD=AC.∴△ACD为等边三角形.∴∠D=∠DCA=∠DAC=60.∴.∵FG∥DA,∴180DCFD.∴.∴
.∴FG⊥OC.∴FG与⊙O相切.„„„„„„„„„„„„„„„„„„„„„3分(2)解:如图6,作EH⊥FG于点H.设CE=a,则DE=a,AD=2a.∵AF与⊙O相切,∴AF⊥AG.又∵DC⊥AG,可得AF∥DC
.又∵FG∥DA,∴四边形AFCD为平行四边形.∵DC=AD,AD=2a,∴四边形AFCD为菱形.∴AF=FC=AD=2a,∠AFC=∠D=60.由(1)得∠DCG=60,3sin602EHCEa,1cos602CHCEa
.∴52FHCHCFa.∵在Rt△EFH中,∠EHF=90,∴332tan552aEHEFCFHa.„„„„„„„„„„„„„„5分图6