【文档说明】2022年中考数学一轮复习习题精选《三角形(含多边形及其内角和)》(含答案).doc,共(14)页,1023.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-41671.html
以下为本文档部分文字说明:
一、选择题1.(市朝阳区初二年级第一学期期末)画△ABC的高BE,以下画图正确的是ABCD答案:D2.(市丰台区初二期末)如图所示,△ABC中AC边上的高线是A.线段DAB.线段BAC.线段BCD.线段BD答案:D3.(市怀柔区初二期末)为估计池塘两岸A,
B间的距离,小明的办法是在地面上取一点O,连接OA,OB,测得OB=15.1m,OA=25.6m.这样小明估算出A,B间的距离不会大于A.26mB.38mC.40mD.41m答案:D4.(市平谷区初二期末)用直角三角板,作△
ABC的高,下列作法正确的是ABCD答案:D5.(延庆区八年级第一学区期末)如图,将ABC△放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么ABC△中BC边上的高是A.102B.104C.105D.5答案:A6、
(房山区二模)如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是A.线段PBB.线段BCC.线段CQD.线段AQ答案:C7.(西城区九年级统一测试)如果一个正多边形的内角和
等于720,那么该正多边形的一个外角等于().A.45B.60C.72D.90答案:B8.(延庆区初三统一练习)利用尺规作图,作△ABC边上的高AD,正确的是答案:B9.(平谷区中考统一练习)一个正多边形的每个内角的度数都等于相邻外角的度数,
则该正多边形的边数是A.3B.4C.6D.12ABCDABCDABCDABCDA.B.C.D.答案B10.(市大兴区检测)已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是A.3B.4C.5D
.6答案D11.(海淀区第二学期练习)若正多边形的一个外角是120°,则该正多边形的边数是A.6B.5C.4D.3答案D12.(门头沟区初三综合练习)如图所示,有一条线段是ABC(AB>AC)的中线,
该线段是A.线段GHB.线段ADC.线段AED.线段AF答案B13.(海淀区第二学期练习)用三角板作ABC△的边BC上的高,下列三角板的摆放位置正确的是ABCD答案A二、填空题14.(延庆区初三统一练习)右图是一个正五边形,则∠
1的度数是.答案:72°15、(丰台区二模)正六边形每个内角的度数是.答案:120°16.(昌平区初二年级期末)小龙平时爱观察也喜欢动脑,他看到路边的建筑和电线架等,发现了一个现象:一切需要稳固的物品都是由三角形这个图形构成的,当时他就思考,数学王国
中不仅只有三角形,为何偏偏用三角形稳固它们呢?请你用所学的数学知识解ABCDEFG1CBAABCABCCBACBAABCABCCBACBAABCABCCBACBAABCABCCBAGHEFDABC释这一现象的依据为.答案:三角形具有稳定性17.(市朝阳区初二年级第一学期期末)如图,点D是线段
AB上一点,90CABADEABF,ACBD,ADBF,ABDE.若AEB,则CEF.(用含的式子表示)答案:900-α18、(市海淀区八年级期末)如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C为.答案:230°19、(市怀
柔区初二期末)三角形的三个内角的度数比是1:1:2.则最大内角的度数是____________.答案:90°20、.(市怀柔区初二期末)如图,△ABC中,BC边所在直线上的高是线段____________.答案
:AD21.(市门头沟区八年级期末)年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中圆地球轨道卫星,是我国北斗三号第一、二GEDCBA颗组网卫星,开启了北
斗卫星导航系统全球组网的新时代.如图所示,在发射运载火箭时,运载火箭的发射架被焊接成了许多的三角形,这样做的原因是:.答案:略22.(市顺义区八年级期末)已知:ABC中,ABAC,30BA,则A.答案:
4023.(市顺义区八年级期末)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.答案:7524.(市顺义区八年级期末)已知:如图,ABC△中,45ABC,H是高AD和BE的交点,12AD,17BC
,则线段BH的长为.答案:1325.(石景山区初三毕业考试)若正多边形的一个外角是45°,则该正多边形的边数是_______.答案:八26、(昌平区二模)10.如图,∠1是五边形ABCDE的一个外角.若∠1=60°,则∠A+∠B+∠C+∠D的度数为_________
.HECDBA答案:420°27.(东城区一模)若多边形的内角和为其外角和的3倍,则该多边形的边数为________________.答案8三、解答题28.(延庆区初三统一练习)如图,在△ABC中,AD平分∠BAC交BC于点D,过点D作DE∥AB交AC于点E.求
证:AE=DE.证明:∵AD平分∠BAC∴∠BAD=∠DAE,∵DE∥AB∴∠BAD=∠ADE……3分∴∠DAE=∠ADE……4分∴AE=DE……5分29.(市朝阳区一模)如图,BD是△ABC的角平分线,DE//BC交AB于点E.(1)求证:BE=DE;(2)若AB=BC=10,求DE的长.解
(1)证明:∵BD是△ABC的角平分线,∴∠EBD=∠CBD.∵DE//BC,∴∠EDB=∠CBD.∴∠EDB=∠EBD.∴BE=DE.„„„„„„„„„„„„„„„„„„„„2分EDCBA(2)解:∵AB
=BC,BD是△ABC的角平分线,∴AD=DC.„„„„„„„„„„„„„„„„„„„„„„3分∵DE//BC,∴1DCADEBAE.„„„„„„„„„„„„„„„„„„„„„4分∴521ABBE.∴5DE.„„„„„„„„„„„„„„„„„„„„„5分
30.(市朝阳区综合练习(一))如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.∴∠CAB=∠B,CE⊥AB.„„„„„„„„„„„„„„„2分∴∠CAB+∠ACE=90°.„„„„„„„„„„„
„„„„„3分∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°.„„„„„„„„„„„„„„„4分∴∠DAB=∠ACE.„„„„„„„„„„„„„„„„„„„5分31.(门头沟区初三综合练习)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC
=60°,∠ABE=25°.求∠DAC的度数.解∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,„„„2分∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,„„„„4分∴∠DAC=∠BAC﹣∠BAD=60°﹣40
°=20°„„„„„„5分32.(通州区一模)EDABC答案:33.(市大兴区检测)如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.解:∵AB=AC,∴∠
B=∠C.∵∠B=50°,∴∠C=50°.……………………1分∴∠BAC=180°-50°-50°=80°.…………………………………………………2分∵∠BAD=55°,∴∠DAE=25°.…………………………………………………………………3分∵DE⊥AD,∴∠ADE=90°.………………………
…………………………………………4分∴∠DEC=∠DAE+∠ADE=115°.………………………………………………5分34.(东城区一模)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D.BF平分∠ABC交AD于点E,交AC于点F.求证:AE=AF.证明:∵∠
BAC=90°,∴∠FBA+∠AFB=90°.-------------------1分∵AD⊥BC,∴∠DBE+∠DEB=90°.----------------2分∵BE平分∠ABC,∴∠DBE=∠FBA.------
-------------3分∴∠AFB=∠DEB.-------------------4分∵∠DEB=∠FEA,∴∠AFB=∠FEA.∴AE=AF.-------------------5分35.(市
朝阳区初二年级第一学期期末)已知:如图,点D,E在ABC的边BC上,ABAC,ADAE.求证:BDCE.证明:过点A作AHBC于点H.„„„„„„„„„„„„„„„„„„1分∵ABAC,ADAE,∴HBHC
,HDHE.„„„„„„„„„„„„„„„„„3分∴HBHDHCHE.即BDCE.„„„„„„„„„„„„„„„„„„„„5分36.(市朝阳区初二年级第一学期期末)在等边ABC外作射线AD,使得AD和AC在直线AB的两侧,BAD(0180),点B关于
直线AD的对称点为P,连接PB,PC.(1)依题意补全图1;(2)在图1中,求BPC的度数;EDCBA(3)直接写出使得PBC是等腰三角形的的值.解:(1)补全的图形如图所示.„„„„„„„„„„„„1分(2)解:连接AP,如图.由点B关于直线AD的对称点为P,
可得AD垂直平分PB.∴APAB.∴PADBAD.∵ABC是等边三角形,∴ABAC,60BAC.∴APAC.„„„„„„„„„„„„„„„„„„„„„„„„2分∴APCACP.∴在APC中,22180APCPADBAC.∴60
APCPAD.∴30BPC.„„„„„„„„„„„„„„„„„„„„„„3分(3)30,75,120,165.„„„„„„„„„„„„„„„„„7分37.(市东城区初二期末)如图,在△ABC
中,AB=AC,AD⊥于点D,AM是△ABC的外角∠CAE的平分线.(1)求证:AM∥BC;(2)若DN平分∠ADC交AM于点N,判断△ADN的形状并说明理由.CBA备用图图1DCBAPDCBAPDCBAABCPABCPNDBCAEM
解:(1)∵AB=AC,AD⊥BC,∴∠BAD=∠CAD=12BAC.„„„„„1分∵AM平分∠EAC,∴∠EAM=∠MAC=12EAC.„„„„„2分∴∠MAD=∠MAC+∠DAC=1122EACB
AC=1180902。∵AD⊥BC∴90ADC∴∠MAD+180ADC∴AM∥BC.。„„„„„3分(2)△ADN是等腰直角三角形„„„„„4分理由是:∵AM∥AD∴∠AND=
∠NDC,∵DN平分∠ADC,∴∠ADN=∠NDC=∠AND.∴AD=AN.„„„„„6分∴△ADN是等腰直角三角形.38.(市丰台区初二期末)如图,△ABC中,∠ACB=90°,AC=BC.在△ABC外侧作直线CP,点A关于直线CP
的对称点为D,连接AD,BD,其中BD交直线CP于点E.图1图2(1)如图1,∠ACP=15°.①依题意补全图形;②求∠CBD的度数;(2)如图2,若45°<∠ACP<90°,直接用等式表示线段AC,DE,BE之间的数量关系.答案:39.(市海淀区八年级期末)如图,A,B分别为CD,C
E的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.解:连接DE.----------------------------------------------1分∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三
角形.----------------------------3分∴∠C=60°.∴∠AEC=90°12∠C=30°.----------------------5分40.(市西城区八年级期末附加题)在平面直角坐标系xOy中,直线l1:12yxb与x轴交于点A,
与y轴交于点B,且点C的坐标为(4,4).(1)点A的坐标为,点B的坐标为;(用含b的式子表示)(2)当4b时,如图1所示.连接AC,BC,判断△ABC的形状,并证明你的结论;EDCBAEDCBA(3)过点C作平行于y轴的直线l2
,点P在直线l2上.当54b时,在直线l1平移的过程中,若存在点P使得△ABP是以AB为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.解:(1)(2b,0),(0,b);„„„„„„„„„„„„„„„„„„„„„2分(
2)等腰直角三角形;„„„„„„„„„„„„„„„„„„„„„„„3分证明:过点C作CD⊥y轴于点D,如图,则∠BDC=∠AOB=90°.∵点C的坐标为(4,4),∴点D的坐标为(0,4),CD=
4.∵当b=4时,点A,B的坐标分别为(8,0),(0,4),∴AO=8,BO=4,BD=8.∴AO=BD,BO=CD.在△AOB和△BDC中,AO=BD,∠AOB=∠BDC,BO=CD,∴△AOB≌△BDC.„„„„„„„„„„„„„„„„„„„4分∴∠1=∠2,
AB=BC.∵∠1+∠3=90°,∴∠2+∠3=90°,即∠ABC=90°.∴△ABC是等腰直角三角形.„„„„„„„„„„„„„„„5分(3)12,83,8.„„„„„„„„„„„„„„„„„„„„„„„„8分备用图图1