2021年人教版高中数学必修第二册课时同步检测10.1.3《古典概型》(解析版)

DOC
  • 阅读 31 次
  • 下载 0 次
  • 页数 10 页
  • 大小 287.500 KB
  • 2022-11-23 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021年人教版高中数学必修第二册课时同步检测10.1.3《古典概型》(解析版)
可在后台配置第一页与第二页中间广告代码
2021年人教版高中数学必修第二册课时同步检测10.1.3《古典概型》(解析版)
可在后台配置第二页与第三页中间广告代码
2021年人教版高中数学必修第二册课时同步检测10.1.3《古典概型》(解析版)
可在后台配置第三页与第四页中间广告代码
2021年人教版高中数学必修第二册课时同步检测10.1.3《古典概型》(解析版)
2021年人教版高中数学必修第二册课时同步检测10.1.3《古典概型》(解析版)
还剩1页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 10
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】2021年人教版高中数学必修第二册课时同步检测10.1.3《古典概型》(解析版).doc,共(10)页,287.500 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-39025.html

以下为本文档部分文字说明:

第十章概率10.1.3古典概型一、基础巩固1.下列试验是古典概型的是()A.种下一粒大豆观察它是否发芽B.从规格直径为(2500.6)mm的一批产品中任意抽一根,测量其直径C.抛一枚硬币,观察其正面或反面出现的情况D.某人射击中靶或不中靶【答案】C【解析】【分析

】根据古典概型的定义判断.【详解】只有C具有古典概型两特点.【点睛】本题考查古典概型的定义,在这个型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的.2.袋中有2个红球,2个白球,2个黑球,从里面任意摸2个小球,不是基本事件的为()A

.{正好2个红球}B.{正好2个黑球}C.{正好2个白球}D.{至少1个红球}【答案】D【解析】袋中有2个红球,2个白球,2个黑球,从中任意摸2个,其基本事件可能是2个红球,2个白球,2个黑球,1红1白

,1红1黑,1白1黑而至少1个红球中包含1红1白,1红1黑,2个红球三个基本事件,故不是基本事件,故选D3.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有

两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A.13B.12C.23D.34【答案】B【分析】基本事件总数为6个,都恰有两个阳爻包含的基本事件个数为3个,由此求出概率.【详解】解:由图可知,含

有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共6个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共3个,所以,所求的概率3162P.故选:B.【点睛】本题渗透传统文化

,考查概率、计数原理等基本知识,考查抽象概括能力和应用意识,属于基础题.4.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()A.恰有1件一等品B.至少有一件一等品C.至多有一件一等品D.都不是

一等品【答案】C【分析】将3件一等品编号为1,2,3,2件二等品的编号为4,5,列举出从中任取2件的所有基本事件的总数,分别计算选项的概率,即可得到答案.【详解】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取

法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),

恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中明确古典

概型的基本概念,以及古典的概型及概率的计算公式,合理作出计算是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.袋中有2个红球5个白球,取出一个白球放回,再取出红球的概率是()A.12B.27C.

16D.17【答案】B【分析】取出一个白球再放回,相当于情况不变.用红球个数除以球的总数即为摸到红球的概率.【详解】解:所有机会均等的可能有7种,摸到红球的可能有2种,因此取出红球的概率为27,故选B.【点睛】本题考察古典概型,概率

等于所求情况数与总情况数之比.6.在一个不透明的袋子中,装有若干个大小相同颜色不同的小球,若袋中有2个红球,且从袋中任取一球,取到红球的概率为15,则袋中球的总个数为()A.5B.8C.10D.12【答案】C【

分析】设袋中球的总个数为n,根据已知条件可得出关于n的等式,由此可求得n的值.【详解】设袋中球的总个数为n,由题意可得215n,解得10n.故选:C.7.如图所示,有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,则向上一面的数字是2的

倍数或3的倍数的概率为()A.23B.13C.12D.16【答案】A【分析】求得向上一面的数字是2的倍数或3的倍数的数字,即可根据古典概型概率求解.【详解】正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,则

向上一面的数字是2的倍数或3的倍数的数字为2,3,4,6,8,9,10,12.所以由古典概型概率可知向上一面的数字是2的倍数或3的倍数的概率为82123故选:A.【点睛】本题考查了古典概型概率的求法,利用列举法求古典概型概率,属于基础题.8.下列关于古典概型的说法中正确的是(

)①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则kPAn.A.②④B.③④C.①④D.①③④【答案】D【分析】利用随机试验的概念及古典概型及其概率计算公式直接求

解.【详解】在①中,由随机试验的定义知:试验中所有可能出现的基本事件只有有限个,故①正确;在②中,由随机试验的定义知:每个基本事件出现的可能性相等,故②错误;在③中,由随机试验的定义知:每个基本事件出现的可能性相等,故③正确;在④中,基本事

件总数为n,随机事件A若包含k个基本事件,则由古典概型及其概率计算公式知P(A)kn,故④正确.故选D.【点睛】本题考查命题真假的判断,是基础题,解题时要认真审题,注意随机试验的概念及古典概型及其概率计算公式的合理运用.9.对数的发明是数学史上的重大事件,它可以改进数字的计算

方法、提高计算速度和准确度.已知{1,3}M,{1,3,5,7,9}N,若从集合M,N中各任取一个数x,y,则3log()xy为整数的概率为()A.15B.25C.35D.45【答案】C【分析】基本事件总

数2510n=?,利用列举法求出3log()xy为整数包含的基本事件有6个,再利用古典概型的概率计算公式即可求解.【详解】{1,3}M,{1,3,5,7,9}N,若从集合M,N中各任取一个数x,y,基本事件总数2510n=?,3log()xy为整数包含的

基本事件有1,1,1,3,1,9,3,1,3,3,3,9,共有6个,3log()xy为整数的概率为63105p.故选:C【点睛】本题考查了古典概型的概率计算公式、分步计数原理、列举法求基本事件个数、对数的运算,属于基础题.10.从2名男同学和3名女同

学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.3【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概

率.详解:设2名男同学为12,AA,3名女同学为123,,BBB,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,AAABABABABABABBBBBBB共10种可能,选中的2

人都是女同学的情况共有121323,,BBBBBB共三种可能则选中的2人都是女同学的概率为30.310P,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A;第二步

,分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;第三步,利用公式()mPAn求出事件A的概率.11.袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二

次抽到白球的概率为()A.3/5B.3/4C.1/2D.3/10【答案】C【分析】先记事件A为“第一次取到白球”,事件B为“第二次取到白球”,则事件AB为“两次都取到白球”,根据题意得到()PA与()PAB,再由条件概率,即可求出结果

.【详解】记事件A为“第一次取到白球”,事件B为“第二次取到白球”,则事件AB为“两次都取到白球”,依题意知3()5PA,3263()542010PAB,所以,在第一次取到白球的条件下,第二次取到白球的概率是3110()325PBA.故选:C.【点睛】本题主要考查条件概率与独立事件

,熟记条件概率的计算公式即可,属于常考题型.12.下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得【答案】C【分析】根据各个选项中的说法

,可以判断是否正确,从而可以解答本题.【详解】对于A,方差可以衡量一组数据的波动大小,故选项A正确;对于B,抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;对于C,一组数据的众数有一个或者几个,故选项C错误;对

于D,抛掷一枚图钉,针尖朝上和针尖朝下的可能性不相等,所以针尖朝上不是一个基本事件,所以不能用列举法求得,故选项D正确;故选:C.【点睛】本题考查了一组数据的方差、众数,考查了抽样方式,属于基础题.二、拓展提升13.设有关于x的一元

二次方程2220xaxb.(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a是从区间0,3任取的一个数,b是从区间0,2任取的一个数,求上述方程有实根的概率.【答案】(Ⅰ)34(Ⅱ)23【分析】(1)本题

是一个古典概型,可知基本事件共12个,方程2220xaxb当0,0ab时有实根的充要条件为ab,满足条件的事件中包含9个基本事件,由古典概型公式得到事件A发生的概率.(2)本题是一个几何概型,试验的全部约束所构成

的区域为{(,)|03aba剟,02}b剟.构成事件A的区域为{(,)|03aba剟,02b剟,}ab….根据几何概型公式得到结果.【详解】解:设事件A为“方程2220xaxb有实数根”.当0,0ab时,方程有实数根的充要条件为ab.(Ⅰ)

基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件

,事件A发生的概率为93()124PA.(Ⅱ)实验的全部结果所构成的区域为{(,)|03,02}abab.构成事件A的区域为{(,)|03,02,}ababab,所求的概率为132422()323PA【点睛】本题考查几何概型和古典概型,放在一起的目

的是把两种概型加以比较,属于基础题.14.交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为T,其范围为0,10,分别有五个级别:2)[0,T,畅通;2,4T

,基本畅通;4,6T,轻度拥堵;6,8T,中度拥堵;8,10T,严重拥堵.在晚高峰时段(2T),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示

.(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率

.【答案】(1)轻度拥堵、中度拥堵、严重拥堵的路段的个数分别为6,9,3;(2)从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,3,1;(3)35【分析】(1)根据在频率分布直方图中,小长方形

的面积表示各组的频率,可以求出频率,再根据频数等于频率乘以样本容量,求出频数;(2)根据(1)求出拥堵路段的个数,求出每层之间的占有比例,然后求出每层的个数;(3)先求出从(2)中抽取的6个路段中任取2个,有多少种可能情况,然后求出至少有1个路段为轻度拥堵有多少种可能情况,

根据古典概型概率公式求出.【详解】(1)由频率分布直方图得,这20个交通路段中,轻度拥堵的路段有(0.1+0.2)×1×20=6(个),中度拥堵的路段有(0.25+0.2)×1×20=9(个),严重拥堵的路段有(0.1+0.05)×1×20=3(个).(2)由(1)知,拥堵路段共有6+

9+3=18(个),按分层抽样,从18个路段抽取6个,则抽取的三个级别路段的个数分别为66218,69318,63118,即从交通指数在[4,6),[6,8),[8,10]的路段中分别抽取的个数为2,

3,1.(3)记抽取的2个轻度拥堵路段为1A,2A,抽取的3个中度拥堵路段为1B,2B,3B,抽取的1个严重拥堵路段为1C,则从这6个路段中抽取2个路段的所有可能情况为:12111213,,,,,,,,AAABABAB1121222321

121311232131,,,,,,,,,,,,,,,,,,,,,ACABABABACBBBBBCBBBCBC,共15种,其中至少有1个路段为轻度拥堵的情况为:121112131121,,,,,,,,,,,,AAABABABACAB222321,

,,,,ABABAC,共9种.所以所抽取的2个路段中至少有1个路段为轻度拥堵的概率为93155.【点睛】本题考查了频率直方图的应用、分层抽样、古典概型概率的求法.解决本题的关键是对频率直方图所表示的意义要了解,分层抽样的原则要知道,要能识别古典概型.15.编号为1,2的两个纸箱中各有6个相同的

小球(分别标有数字1,2,3,4,5,6),从1,2两个纸箱中各摸出一个小球,分别为,xy,求满足条件2yx的概率.【答案】112.【分析】利用古典概型公式求解.【详解】从1,2两个纸箱中各摸出一个小球的事件总数有36种.又2yx,其中,1,2,3,4,5,6xy,满足条

件的有1,2,2,4,3,6,故所求概率313612P==.

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?