【文档说明】2021年高中数学人教版必修第一册:3.4《函数的应用(一)》精品讲义(含解析).doc,共(7)页,282.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-31225.html
以下为本文档部分文字说明:
3.4函数的应用(一)考点一一次函数模型【例1】(2020·全国高一专题练习)某厂日生产文具盒的总成本y(元)与日产量x(套)之间的关系为y=6x+30000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒()A.2000套B.3000套C.4000套D.5000套【答
案】D【解析】因利润z=12x-(6x+30000),所以z=6x-30000,由z≥0解得x≥5000,故至少日生产文具盒5000套.故选:D【一隅三反】1.某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立
方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.方案一:工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗思维导图常见考法为30000元;方案二:工厂将污水排到污水处理厂统一处理,每处
理1立方米污水需付14元的排污费.问:(1)工厂每月生产3000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?通过计算加以说明.(2)若工厂每月生产6000件产品,你作为厂长,又该如何决策呢?【答案】见解析【解析】设工厂每月生产x
件产品时,依方案一的利润为,依方案二的利润为,由题意知,.(1)当时,,,因为,所以应选择方案二处理污水.(2)当时,,,因为,所以应选择方案一处理污水考点二二次函数模型【例2】(2020·浙江高一课时练
习)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售单价x(单位:元/千克)满足关系式100(8)4ayxx,其中48x,a为常数,已知销售单价为6元/千克时,每日可售出该商品220千克.(1)求a的值;(2)若该商品的进价为4元/千克,试确定销售单价
x的值,使商场每日销售该商品所获得的利润最大,并求出利润的最大值.【答案】(1)40a(2)当6x时,函数()fx取得最大值,且最大值等于440.【解析】(1)因为y10084axx.且6x时,y220.所以a200220.2解得.40a.(2)由(1)可知,该商品每
日的销售量40y10084xx.所以商场每日销售该商品所获得的利润:40410084fxxxx24010048-1006440?(4x8)xxx()()因为fx为二次函数,且开口向上,对称轴为6x.
所以,当6x时,函数fx取得最大值,且最大值等于440.所以当销售价格定为6元/千克时,商场每日销售该商品所获得的利润最大,最大利润为440元.【一隅三反】1.(2020·全国高一专题练习)某商店进货
单价为45元,若按50元一个销售,能卖出50个,若销售单价每涨1元,其销售量就减少2个,为了获得最大利润,此商品的最佳售价应为每个_____元.【答案】60【解析】设涨价x元,销售的利润为y元,则22(5045)(502
)2402502(10)450yxxxxx,当10x,即销售单价为60元时,y取得最大值.故答案为:602(2019·安徽金安.六安一中高一月考)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益fx与投资额x成正比,且投资1万元时的收
益为18万元,投资股票等风险型产品的收益gx与投资额x的算术平方根成正比,且投资1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?【答案】(1)11,(
),(0)82fxxgxxx;(2)投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【解析】(1)依题意设12,()fxkxgxkx,1211(1),(1)82fkgk,
11,(),(0)82fxxgxxx;(2)设投资股票等风险型产品为x万元,则投资债券等稳健型产品为20x万元,11(20)()(20)82yfxgxxx21(2)3,0208xx,当2,4xx万元时,收益最大max3y万元,20万元资金
,投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.考点三分段函数模型【例3】(2019·黄梅国际育才高级中学高一月考)某公司生产一种电子仪器的固定成本为20000元,每生产
一台仪器需增加投入100元,已知总收益满足函数214000400280000400xxxRxx,其中x(台)是仪器的月产量.(1)将利润表示为月产量的函数fx;(2)当月产量为何值时,公司所获利
润最大?最大利润为多少元?(总收益总成本利润)【答案】(1)fx21300200000400260000100400xxxxx;(2)每月生产300台仪器时利润最大,最大利润为25000元.【解析】(1)月产量为x台,则总成本为
20000100x元,从而20000100Rxxxf21300200000400260000100400xxxxx.(2)由(1)可知,当0400x时,
21300250002fxx,当300x时,max25000fx;当400x时,60000100fxx是减函数,6000010040025000fx,当300x时,max25
000fx,即每月生产300台仪器时利润最大,最大利润为25000元.【一隅三反】1.(2020·浙江高一课时练习)2018年10月24日,世界上最长的跨海大桥—港珠澳大桥正式通车。在一般情况下,大桥上
的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数当桥上的车流密度达到220辆/千米,将造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米,车流速度为100千米/时研究表明:当20220x时,车流速度v是车流密度x的一次函数.(1)当20220x
时,求函数()vx的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)()()fxxvx可以达到最大?并求出最大值.【答案】(1)100,020()1110,2
02202xvxxx;(2)当车流密度为110辆/千米时,车流量最大,最大值为6050辆/时.【解析】(1)由题意,当020x时,v(x)=100,当20220x时,设()vxaxb,则201002200abab解得:12a
,110b∴100,020()1110,202202xvxxx(2)由题意,2100,020()1110,202202xxfxxxx当020x时,()fx的最大值为(20)2000f当20220x时,21()(110)605
02fxx,()fx的最大值为(110)6050f∴当车流密度为110辆/千米时,车流量最大,最大值为6050辆/时.2.(2020·宾县第二中学高二期中(理))某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还
需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为2152tt(万元).(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;(2)当这种产品的年产量为多
少时,当年所得利润最大?【答案】(1)f(x)=214.750.5,(05)2120.25,(5)xxxxx;(2)475件.【解析】(1)当0<x≤5时,产品全部售出,当x>5时,产品只能售出500件.所以f(x)=2215(0.50.25),(05)21555(0.50
.25),(5)2xxxxxx即f(x)=214.750.5,(05)2120.25,(5)xxxxx(2)当0<x≤5时,f(x)=
-12x2+4.75x-0.5,所以当x=4.75(百件)时,f(x)有最大值,f(x)max=10.78125(万元).当x>5时,f(x)<12-0.25×5=10.75(万元).故当年产量为475件时,当年所得利润最大.3.(
2020·全国高一专题练习)某商品在某月的30天内每件销售价格P(元)与时间t(天)的函数关系式是**20025,1002530,tttPtttNN剟,该商品的日销售量Q(件)与时间t(天)的函数关系式是*40(030,QtttN„,求这种商品的
日销售金额的最大值,并指出日销售金额最大的是30天中的第几天.【答案】900.10【解析】设这种商品的日销售金额为y万元,则有yPQ**(20)(40)025,(100)(40)2530,tttttttt
NN剟当*025,ttN时,10t时,max900y;*2530,ttN剟时,25t时,max1125y.所以这种商品的日销售金额的最大值为1125元,日销售金额的最大的一天是30天中的第25天.