【文档说明】中考数学二轮复习压轴题精讲专题3:二次函数与等腰直角三角形 (含答案详解).doc,共(16)页,512.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-258481.html
以下为本文档部分文字说明:
二次函数与等腰直角三角形1.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)
若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】
(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根
据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得
点P的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P
(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点
G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴当m=时,S有最大值是;(3)如图3,过P作
MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥M
N于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(
2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.2.定义:函数的伴随函数是.如:函数的伴随函数是.(1)函数的图像经过点,,求它的伴随函数;(2)函数的图像与它的伴随函数
图像交于A,B两点(点A在点B的左侧),与伴随函数的对称轴交于点P,它的伴随函数图像交轴于C,D两点(点C在点D的左侧),伴随函数的图像经过点(-l,0).设的面积为S.①函数与它的伴随函数图像交于点(________,________),(________,________)(用含
b的代数式表示);②当伴随函数的对称轴在直线右侧时,求S与b之间的函数关系式;(3)函数图像与它的伴随函数图像交于A,B两点(点A在点B的左侧).与x轴交于点Q,点A关千它的伴随函数对称轴的对称点为点,当是等腰直角三角形时,
直接写出c的值.【答案】(1);(2)①;;②当时,;当时,;当时,;(3)1,-1,【解析】【分析】(1)将点,代入,解得b、c的值,再代入伴随函数即可;(2)①图象交点即是解析式方程的公共解,联立两个解析式,转化成解一元二次方程,即可解出两个交
点的横坐标,将代入伴随函数,可得c与b的关系式,从而解得交点坐标;②由①中c、b的关系式解得函数与其伴随函数,分别求出点C、D、P的坐标,分三种情况讨论:或,根据三角形面积公式解题;(3)分两种情况讨论:当b>
0时与当b<0时,由抛物线的对称性解得坐标,进而再讨论当或时,由直线AQ的斜率解题即可.【详解】解:(1)把(3,0),(0,-3)代入中,得解得∴伴随函数是.(2)①解得或,伴随函数经过,,函数与它的伴随函数图象相交于点,故答案为:,;②
由①知,伴随函数经过,,函数的伴随函数是令y=0,得函数当时,.当时,.当时,.(3)分两种情况讨论:当b>0时,,点A关于对称轴的对称点,①当时,,等腰直角三角形中;②当时,,,,;当b<0时,,点A关于对称轴的对称点,①当时,,等腰
直角三角形中;②当时,,,,;综上所述,c=1,-1,.【点睛】本题考查二次函数综合,其中涉及二次函数与x轴的交点、二次函数的对称轴、二次函数与一次函数图象的交点、一次函数的解析式、二次函数的解析式、一元二次方程、等腰直角三角形、三角形面积、分类讨论法等知识,是重要
考点,难度较难,掌握相关知识是解题关键.3.如图,已知直线交轴于点,交轴于点,抛物线经过点,与直线交于、两点,点为抛物线上的动点,过点作轴,交直线于点,垂足为.(1)求抛物线的解析式;(2)当点位于抛物线对称轴右侧时,点为抛物线对称轴左侧一个动点,过点作轴,垂足为点.若四
边形为正方形时求点的坐标;(3)若是以点为顶角顶点的等腰直角三角形时,请直接写出点的横坐标.【答案】(1)抛物线的解析式为;(2)四边形为正方形时点的坐标为和;(3)点的横坐标为2或-1或或.【解析】【分析】(1)先由二次函数解析式求出C点坐标,进而求出一次函数解
析式,再求出B点坐标,最后把A、B坐标代入抛物线解析式解方程即可;(2)四边形为正方形时,,轴,且P、Q两点关于对称轴对称,设出P点坐标,表示出,解方程即可;(3)由是以点为顶角顶点的等腰直角三角形,可
得∠QPF=∠PEB,即轴,可得P、Q两点关于对称轴对称,设,用分别表示Q、F坐标即可,最后根据PQ=PF列方程计算即可解题.【详解】(1)抛物线经过点,则点坐标为(0,3),代入可得,则直线的解析式为.直线经过点,则点坐标为(3,0)将点、代入抛物
线解得,∴抛物线的解析式为.(2)抛物线的对称轴为.∵四边形为正方形,∴,轴.∴点与点关于直线对称.设点,则,.∴,解得:或(舍去)或或(舍去)当时,点,当时,点,∴四边形为正方形时点的坐标为和(3)点的横坐标为2或-1或或.∵是以点为顶角顶点的等腰直角三角
形∴∠QPF=∠PEB=90°∴轴∴点与点关于直线对称.设点,则,∴.∵,∴,解得:或或或综上所述,点的横坐标为2或-1或或.【点睛】本题是二次函数综合题,熟记一次函数、正方形、等腰三角形的性质是解题的关键,难度一般,但
是计算量比较大,需要注意.4.将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线.(1)直接写出抛物线,的解析式;(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;(3)如图(2),直
线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点.【答案】(1)抛物线的解析式为:y=x2-4x-2;抛物线的解析式为:y=x2-6;(2)点的坐标为(5,3)或(4,-2);(3)直线经过
定点(0,2)【解析】【分析】(1)根据函数图象上下平移:函数值上加下减;左右平移:自变量左加右减写出函数解析式并化简即可;(2)先判断出点A、B、O、D四点共圆,再根据同弧所对的圆周角相等得到∠BDA=∠BOA=45°,从而证出是等腰直角三角形.设点A的坐
标为(x,x2-4x-2),把DC和AC用含x的代数式表示出来,利用DC=AC列方程求解即可,注意有两种情况;(3)根据直线(,为常数)与抛物线交于,两点,联立两个解析式,得到关于x的一元二次方程,根据根与系数的关系求出点M的横坐标,进而求出纵坐标,同理求出点N的坐标,再用待定系数
法求出直线MN的解析式,从而判断直线MN经过的定点即可.【详解】解:(1)∵抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线,∴抛物线的解析式为:y=(x-2)2-6,即y=x2-4x-2,抛物线的解析式为:y
=(x-2+2)2-6,即y=x2-6.(2)如下图,过点A作AC⊥x轴于点C,连接AD,∵是等腰直角三角形,∴∠BOA=45°,又∵∠BDO=∠BAO=90°,∴点A、B、O、D四点共圆,∴∠BDA=∠BOA=45°,∴∠ADC=90°-∠BDA=45°,∴是等腰直角三角形,∴DC=AC.∵点
在抛物线对称轴右侧上,点在对称轴上,∴抛物线的对称轴为x=2,设点A的坐标为(x,x2-4x-2),∴DC=x-2,AC=x2-4x-2,∴x-2=x2-4x-2,解得:x=5或x=0(舍去),∴点A的坐标为(5,3);同理,当
点B、点A在x轴的下方时,x-2=-(x2-4x-2),x=4或x=-1(舍去),∴点的坐标为(4,-2),综上,点的坐标为(5,3)或(4,-2).(3)∵直线(,为常数)与抛物线交于,两点,∴,∴x2-
kx-6=0,设点E的横坐标为xE,点F的横坐标为xF,∴xE+xF=k,∴中点M的横坐标xM==,中点M的纵坐标yM=kx=,∴点M的坐标为(,);同理可得:点N的坐标为(,),设直线MN的解析式为y=ax+b(a≠0),将
M(,)、N(,)代入得:,解得:,∴直线MN的解析式为y=·x+2(),不论k取何值时(),当x=0时,y=2,∴直线经过定点(0,2).【点睛】本题考查二次函数综合应用,熟练掌握图象平移的规律、判断点A、B、O、D四点共圆的方法、用待定系数法求函数解析式的步骤是解题的关键.5.如图,已
知抛物线经过,,三点.(1)求该抛物线的解析式;(2)经过点B的直线交y轴于点D,交线段于点E,若.①求直线的解析式;②已知点Q在该抛物线的对称轴l上,且纵坐标为1,点P是该抛物线上位于第一象限的动点,且在l右侧
.点R是直线上的动点,若是以点Q为直角顶点的等腰直角三角形,求点P的坐标.【答案】(1);(2)①;②(2,4)或(,)【解析】【分析】(1)根据待定系数法求解即可;(2)①过点E作EG⊥x轴,垂足为G,设直线BD的表达式为:y=k(x-4),求出直线AC的表达式,和BD联立,求出点E坐标,证明△
BDO∽△BEG,得到,根据比例关系求出k值即可;②根据题意分点R在y轴右侧时,点R在y轴左侧时两种情况,利用等腰直角三角形的性质求解即可.【详解】解:(1)∵抛物线经过点,,,代入,∴,解得:,∴抛物线表达式为:;(
2)①过点E作EG⊥x轴,垂足为G,∵B(4,0),设直线BD的表达式为:y=k(x-4),设AC表达式为:y=mx+n,将A和C代入,得:,解得:,∴直线AC的表达式为:y=2x+4,联立:,解得:,∴E(,),∴G(,0),∴BG=,∵EG⊥x轴,
∴△BDO∽△BEG,∴,∵,∴,∴,解得:k=,∴直线BD的表达式为:;②由题意:设P(s,),1<s<4,∵△PQR是以点Q为直角顶点的等腰直角三角形,∴∠PQR=90°,PQ=RQ,当点R在y轴右侧时,如图,分别过点P,R作l的垂线,垂足为M和N,∵∠PQR
=90°,∴∠PQM+∠RQN=90°,∵∠MPQ+∠PQM=90°,∴∠RQN=∠MPQ,又PQ=RQ,∠PMQ=∠RNQ=90°,∴△PMQ≌△QNR,∴MQ=NR,PM=QN,∵Q在抛物线对称轴l
上,纵坐标为1,∴Q(1,1),∴QN=PM=1,MQ=RN,则点P的横坐标为2,代入抛物线得:y=4,∴P(2,4);当点R在y轴左侧时,如图,分别过点P,R作l的垂线,垂足为M和N,同理:△PMQ≌△QNR,∴NR=QM,NQ=PM
,设R(t,),∴RN==QM,NQ=1-t=PM,∴P(,2-t),代入抛物线,解得:t=或(舍),∴点P的坐标为(,),综上:点P的坐标为(2,4)或(,).【点睛】本题是二次函数综合题,考查了待定系数法,等腰直角三
角形的性质,全等三角形的判定和性质,一次函数,难度较大,解题时要理解题意,根据等腰直角三角形的性质构造全等三角形.6.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析
式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若
不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【解析】【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2
t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2
x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<
t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2
﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF
+S△PBF=PF?OH+PF?BH=PF?OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t
2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴yE=yP,即点E、P关于对称轴对称∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2
t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解
得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.【点睛】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.