【文档说明】《4.1 从问题到方程》教学设计2-七年级上册数学苏科版.doc,共(3)页,1.367 MB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-25616.html
以下为本文档部分文字说明:
14.1从问题到方程教学目标:1.探索实际问题中的已知量和未知量之间的相等关系,并用方程描述,使学生初步感受用方程描述这种相等关系最简明;2.初步认识、体会方程与现实世界的密切联系;3.了解一元一次方程的概念.教学重
点:探索实际问题中的相等关系并列出方程.教学难点:改变用算术方法解应用题的习惯,学习如何从实际问题转化为方程.一、情境导入,激发思考1.如图,天平左盘内有一袋食盐,天平右盘内有一些砝码,天平平衡时,你能说出食盐的质量吗?怎样描述天平平衡时数量之间的相
等关系?2.(教学活动)已知天平左盘中放有食盐,在天平的右盘内放入砝码,你能称出食盐的质量吗?(设计意图:学生动手操作,激发学生的兴趣,体验天平平衡的相等关系)议一议:1.如图,天平的左盘中有两个相同的小球和一个质量为1g的小球,右盘中有一个5g的砝码.怎样描述天平平衡时所表示的数
量之间的相等关系?小结:方程是表达数量之间相等关系的“天平”.(设计意图:体会到未知量与已知量之间的联系,再次感受平衡)22.篮球联赛规则规定:胜一场得2分,负一场得1分.某篮球队赛了12场,共得20分.怎样描述其中数量之间的相等关系?(分析)相等关
系:胜场的得分+负场的得分=20解:设该队胜x场,那么该队负(12-x)场,可列出方程:2x+(12-x)=20总结:实际问题中已知量和未知量之间的相等关系,可以用多种不同的方式描述.通过比较可以看出,用方程描述这种相等关系最简明.(设计意图:
在小学知识的基础上,感受方程的简洁明了)想一想:3.我国古代问题:以绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.绳长、井深各几何?意思是:用绳子量井深,把绳三折来量,井外余绳四尺;把绳四折来量,井外余绳一尺.绳长、井深各几尺?(设计意图:
复杂关系中寻找不变量和等量关系,多种方法建立方程,思维的发散训练)二、合作探究,建构生成你觉得“从问题到方程”一般要经历哪些过程?(1)弄清题目中已知什么,求什么,找出题目中的相等关系;(2)设未知量为x;(3)用x表示出相关的量,根据相等关系列出方
程.试一试:(学生练习)1.我们知道,按下图方式搭n条“小鱼”需要[8+6(n-1)]根火柴棒.搭n条“小鱼”用了140根火柴棒,怎样用方程来描述其中数量之间的相等关系?2.今年小红5岁,爸爸32岁.
(1)用代数式分别表示x年后小红与爸爸的年龄.(2)如果x年后小红的年龄是爸爸年龄的41,怎样用方程来描述其中数量之间的相等关系?(设计意图:学生尝试练习,寻求等量关系建立方程)三、观察归纳,理解概念观察归纳:以上所列方程有什么特点?叫一元一次方程.3数学小知识:宋元时期,中国数学家创
立了“天元术”,用“天元”表示未知数进而建立方程。这种方法的代表作是数学家李冶写的《测圆海镜》,书中所说的“立天元一”相当于“设未知数x。”所以在简称方程时,将未知数称为“元”,如一个未知数的方程叫“一元方程”。而
两个以上的未知数,在古代又称为“天元”、“地元”、“人元”。(设计意图:对数学知识的拓展,认识到方程的作用和重要意义)练一练:1.下列各式中,哪些是一元一次方程?①x=1,②3x+2=8x-7,③-2x-3=0,④x+1>3,⑤2x+1,⑥312yx
,⑦42x课堂小结:1.你学到了什么数学知识?2.你体会到了什么数学思想方法?大家名言:早在300多年前法国数学家笛卡尔有一个伟大的设想:首先把宇宙万物的所有问题都转化为数学问题;其次,把所有的数学问题转化为代数问题;最后,把所有的代数问题转化为方程问题
。虽然笛卡尔的“伟大设想”没有实现,但是充分说明了方程的重要性。课后作业:课本P98习题1、2、3、4.