【文档说明】《6.4 三角形的中位线定理》PPT课件3-八年级下册数学青岛版.ppt,共(19)页,2.685 MB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-22173.html
以下为本文档部分文字说明:
青岛版义务教育教科书数学八年级(下)让我们一起走进美丽的数学世界如图,有一块三角形的蛋糕,准备平均分给四个同学,要求四人所分的形状大小相同,请设计合理的解决方案。诸城市明德学校王敏【学习目标】1.了解三角形中位线的定义2.探索并掌握三角形的中位线定理(重点)3.
会利用三角形的中位线定理计算和证明(难点)温馨提示三角形有三条中位线三角形的中位线和三角形的中线不同EDFACB你还能画出几条三角形的中位线?连结三角形两边中点的线段叫三角形的中位线。(1)相同之处:都和边的中点有关;(2
)不同之处:三角形中位线的两个端点都是边的中点;三角形中线只有一个端点是边的中点,另一端点是三角形的顶点。CBAED概念对比CBAD中线DC中位线DE理解三角形的中位线定义的两层含义:②如果DE为△ABC的中位线,那么D、E分别为AB、AC的___。①如果D、E分别为
AB、AC的中点,那么DE为△ABC的___;CBAED中位线中点ABCDE合作探究观察猜想在△ABC中,中位线DE和边BC有怎样的位置关系和数量关系?DE和边BC关系位置关系:数量关系:DE∥BCDE=BC21已知:如图,在△A
BC中,AD=DB,AE=EC求证:DE∥BC,DE=BC.EABCDF证明:延长DE到F,使EF=ED,连接CF∵AE=CE,∠AED=∠CEF∴△ADE≌△CFE(SAS)∴CF=AD,∠A=∠FCE∴CF//AB∵AD=
DB∴CF=BD,CF//BD∴四边形BCFD是平行四边形∴DE//BC,DF=BC∵DE=DF∴DE=BC2121分析论证上面的实验过程对添加辅助线有什么启示?21合作探究CABDE用几何语言表述为∵DE是△ABC的中位线∴DE∥BC
,DE=BC.21数量关系位置关系得出结论F三角形的中位线平行于第三边,并且等于第三边的一半.①证明平行问题②证明一条线段是另一条线段的两倍或一半用途如图所示,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是
AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定CACBEDF①若∠ADE=65°,则∠B=度,为什么?②若BC=8cm,则DE=cm,为什么?654
③若AC=4cm,BC=6cm,AB=8cm,则△DEF的周长=______如图,在△ABC中,D、E、F分别是AB、AC、BC的中点9cm④若△ABC的周长为24,△DEF的周长是_____121.三角形三条中位线围成的三角形的周长与原三角形的周长有
什么关系?2.三角形三条中位线围成的三角形的面积与原三角形的面积有什么关系?⑤图中有_____个平行四边形⑥若△ABC的面积为24,△DEF的面积是_____36周长是原三角形的二分之一面积是原三角形的四分之一F(中点)(中点)DE(中点)ABC如图,A、B两点被池塘隔开,现在
要测量出A、B两点间的距离,但又无法直接去测量,怎么办?MN在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20m,那么A、B两点的距离是多少?为什么?CBA2040已知
:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.ABCDEFGHE,F是AB,BC的中点,你联想到什么?要使EF成为一个三角形的中位线应怎样添加辅助线?证明:连接AC∵EF是△ABC的中位线AC21//EF同
理可证:AC21//GHEF//GH∴四边形EFGH是平行四边形例1通过本节课的学习,你有什么收获?还有什么困惑?必做:(1)课本习题6.4第2,3,4题课后作业选做:(1)课本习题6.4第5,6题