《二次函数y=ax2 k的图像和性质》教学设计4-九年级上册数学沪科版

DOC
  • 阅读 22 次
  • 下载 0 次
  • 页数 3 页
  • 大小 32.000 KB
  • 2022-11-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
此文档由【小喜鸽】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《二次函数y=ax2 k的图像和性质》教学设计4-九年级上册数学沪科版
可在后台配置第一页与第二页中间广告代码
《二次函数y=ax2 k的图像和性质》教学设计4-九年级上册数学沪科版
可在后台配置第二页与第三页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的1 已有0人下载 下载文档0.90 元
/ 3
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
文本内容

【文档说明】《二次函数y=ax2 k的图像和性质》教学设计4-九年级上册数学沪科版.doc,共(3)页,32.000 KB,由小喜鸽上传

转载请保留链接:https://www.ichengzhen.cn/view-20199.html

以下为本文档部分文字说明:

21.2二次函数y=ax2+bx+c的图象和性质第二课时教学目标:1、使学生能利用描点法正确作出函数y=ax2+k的图象。2、让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+k的性质及它与函数y=ax2的关系。重点难点:1、会用描

点法画出二次函数y=ax2+k的图象,理解二次函数y=ax2+k的性质,理解函数y=ax2+k与函数y=ax2的相互关系。2、正确理解二次函数y=ax2+k的性质,理解抛物线y=ax2+k与抛物线y=ax2的关系是教学的难点。教学过程:一、提出问题1.二次函数y=2x2的图象是__

__,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。2.二

次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?(画出函数y=2x2和函数y=2x2的图象,并加以比较)问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的

图象吗?教学要点1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.3.教师写出解题过程,同学生所画图象进行比较。解:(1)列表

:x…-3-2-10123…y=x2…188202818…y=x2+1…1993l3919…(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。(图象略)问题3:当自变量x取同一数值时,这两个函数的函

数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2

的函数值大1。教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相

应点向上移动了一个单位。问题4:函数y=2x2+1和y=2x2的图象有什么联系?由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。问题5:现在你能回答前面提出的第2个问题了吗?让学生观察两个函数图象,说出函数y=

2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?完成填空:当x___

___时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.以上就是函数y=2x2+1的性质。三、做一做问题7:先

在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?教学要点1.在学生画函数图象的同时,教师巡视指导;2.让学生发表意见,归纳为:函数y=2x2-2与函数y=

2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?教学要点1.让学生口答,函数y=2x2-2的图象的开口向上

,对称轴为y轴,顶点坐标是(0,-2);2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值

,最小值y=-2。问题9:在同一直角坐标系中。函数y=-13x2+2图象与函数y=-13x2的图象有什么关系?要求学生能够画出函数y=-13x2与函数y=-13x2+2的草图,由草图观察得出结论:函数y=-131/3x2+2的图象与函数y=-13x2的图象的开口方向、对称轴相同,但

顶点坐标不同,函数y=-13x2+2的图象可以看成将函数y=-13x2的图象向上平移两个单位得到的。问题10:你能说出函数y=-13x2+2的图象的开口方向、对称轴和顶点坐标吗?[函数y=-13x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]问题11:这个函数图象有哪些性

质?让学生观察函数y=-13x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。四、练习:P13练习1、2、3。五、小结1.在同一直角坐标系中,函数y=ax2+k的图象与

函数y=ax2的图象具有什么关系?2.你能说出函数y=ax2+k具有哪些性质?六、作业布置习题21.24(1)其他:七、个性化设计与课后反思:

小喜鸽
小喜鸽
好文档,与你分享
  • 文档 161806
  • 被下载 27284
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?