【文档说明】《三角形全等的判定定理4(AAS)》PPT课件7-八年级上册数学沪科版.ppt,共(15)页,1.789 MB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-20015.html
以下为本文档部分文字说明:
三角形全等的判定(复习)方法指引证明两个三角形全等的基本思路:(1):已知两边----找第三边(SSS)找夹角(SAS)(2):已知一边一角---已知一边和它的邻角已知一边和它的对角找这边的另一个邻角(ASA)找这个角的另一个边(SAS)找这边的对角(AAS)
找一角(AAS)(3):已知两角---找两角的夹边(ASA)找夹边外的任意边(AAS)练习例1:已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=BF,求证:∠E=∠CABDFEC证明:∵AD=FB∴∴AD+DB=BF+DB即AB=FD在△
ABC和△FDE中AC=FEBC=DEAB=FD△ABC≌△FDE(SSS)∴∠E=∠C例2:已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=ADEDCAB证明:∵△ABC和△
ECD都是等边三角形∴AC=BCDC=EC∠BCA=∠DCE=60°∴∠BCA+∠ACE=∠DCE+∠ACE即∠BCE=∠DCA在△ACD和△BCE中AC=BC∠BCE=∠DCADC=EC∴△ACD≌△BCE(SAS)∴BE=AD例3:如图,已知E在AB上,∠1=∠2
,∠3=∠4,那么AC等于AD吗?为什么?4321EDCBA解:AC=AD理由:在△EBC和△EBD中∠1=∠2∠3=∠4EB=EB∴△EBC≌△EBD(AAS)∴BC=BD在△ABC和△ABD中AB=AB∠1=∠2BC=BD∴△ABC≌△ABD(SAS
)∴AC=AD拓展题例4.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。ACEBD要证明两条线段的和与一条线段相等时常用的两种方法:1、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余
的线段与另一条线段相等。(割)2、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补)总结提高学习全等三角形应注意以下几个问题:(1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2):表示两个三角形全等时,表示对应顶点的字母要写在
对应的位置上;(3):要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”交流平台本节课你还有理解不透澈的地方吗?祝同学们学习进步再见FEDCBA例6:如图,已知AC∥EF,DE∥BA,若
使△ABC≌△EDF,还需要补充的条件可以是或或或AB=EDAC=EFBC=DFDC=BF返回练习1:如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。FEDCBA△ABF≌△DEC△CBF≌
△FEC△ABC≌△DEF答:练2练习1:如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。FEDCBA△ABF≌△DEC答:证明:∵AB∥DE∴∠A=∠D在△ABF和△DEC中AB=DE∠A=∠DAF=DC∴△ABF≌△DEC(SAS)练习1:如
图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。FEDCBA△ABF≌△DEC答:练习1:如图,已知,AB∥DE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。FEDCBA答:△ABC≌△DEF证明:∵AB∥DE∴∠A
=∠D∵AF=DC∴AF+FC=DC+FC∴AC=DF在△ABC和△DEF中AC=DF∠A=∠DAB=DE∴△ABC≌△DEF(SAS)知识梳理:1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?2:全等三角形有哪
些性质?3:三角形全等的判定方法有哪些?能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。SSS
、SAS、ASA、AASEDCBA例5:如图所示,AB=AD,∠E=∠C要想使△ABC≌△ADE可以添加的条件是依据是∠EDA=∠B∠DAE=∠BAC∠BAD=∠EACAAS