《三角形全等的判定定理1(SAS)》PPT课件2-八年级上册数学沪科版

PPT
  • 阅读 48 次
  • 下载 0 次
  • 页数 21 页
  • 大小 1.873 MB
  • 2022-11-18 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
此文档由【小喜鸽】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《三角形全等的判定定理1(SAS)》PPT课件2-八年级上册数学沪科版
可在后台配置第一页与第二页中间广告代码
《三角形全等的判定定理1(SAS)》PPT课件2-八年级上册数学沪科版
可在后台配置第二页与第三页中间广告代码
《三角形全等的判定定理1(SAS)》PPT课件2-八年级上册数学沪科版
可在后台配置第三页与第四页中间广告代码
《三角形全等的判定定理1(SAS)》PPT课件2-八年级上册数学沪科版
《三角形全等的判定定理1(SAS)》PPT课件2-八年级上册数学沪科版
还剩10页未读,继续阅读
【这是VIP专享文档,需开通VIP才能继续阅读】
/ 21
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
文本内容

【文档说明】《三角形全等的判定定理1(SAS)》PPT课件2-八年级上册数学沪科版.ppt,共(21)页,1.873 MB,由小喜鸽上传

转载请保留链接:https://www.ichengzhen.cn/view-20008.html

以下为本文档部分文字说明:

ABC1.什么叫全等三角形?能够重合的两个三角形叫全等三角形。2.两个全等三角形有什么性质?全等三角形的对应边相等,对应角相等。3、如图∆ABC≌∆A’B’C’,说出两个三角形中的对应边、对应角?'A'B'CABC即:三条边对应相等,三个角对应相等的两个三角形全等。六个条件,可得

到什么结论?'A'B'CC'B'A'ABC答:≌''''''ACCA3CBBC2BAAB1=)(=)(=)(C'B'A'ABC中,有和在CC6BB5AA4=)(=)(=)(’’’与满足上述六个条件中的一部分是否能保证与全等呢?CBAABCCBAA

BCABCABC一个条件可以吗?两个条件可以吗?一个条件可以吗?1.有一条边相等的两个三角形不一定全等探究活动2.有一个角相等的两个三角形不一定全等结论:有一个条件相等不能保证两个三角形全等.6cm300有两个条件对应相等不能保证三角形全等.6

0o300不一定全等1.有两个角对应相等的两个三角形两个条件可以吗?3.有一个角和一条边对应相等的两个三角形2.有两条边对应相等的两个三角形不一定全等30060o4cm不一定全等30o6cm结论:探究活动

三个条件呢?探究活动1.三个角;2.三条边;3.两边一角;4.两角一边。如果给出三个条件画三角形,你能说出有哪几种可能的情况?结论:三个内角对应相等的三角形不一定全等。探究活动有三个角对应相等的两个三角形60o

30030060o三个条件呢?尺规作图,探究边角边的判定方法问题1先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,∠A'=∠A,C′A′=CA(即两边和它们的夹角分别相等).把画好的△A

′B′C′剪下来,放到△ABC上,它们全等吗?ABCABCA′DE尺规作图,探究边角边的判定方法现象:两个三角形放在一起能完全重合.说明:这两个三角形全等.画法:(1)画∠DA′E=∠A;(2)在射线A′D上截取A′B′=AB,在射线A′E上截取A′C′=AC;(3)连接B′C′.B′C′

几何语言:在△ABC和△A′B′C′中,∴△ABC≌△A′B′C′(SAS).尺规作图,探究边角边的判定方法归纳概括“SAS”判定方法:两边和它们的夹角分别相等的两个三角形全等(可简写成“边角边”或“SAS”).AB=A′B′,∠A

=∠A′,AC=A′C′,课堂练习下列图形中有没有全等三角形,并说明全等的理由.甲丙乙30°30°30°课堂练习图甲与图丙全等,依据就是“SAS”,而图乙中30°的角不是已知两边的夹角,所以不与另外两个三角形全等.甲丙乙30°30°30°已知:如图,AD∥BC,AD=

CB求证:△ADC≌△CBA分析:观察图形,结合已知条件,知,AD=CB,AC=CA,但没有给出两组对应边的夹角(∠1,∠2)相等。所以,应设法先证明∠1=∠2,才能使全等条件充足。AD=CB(已知)∠1=

∠2(已证)AC=CA(公共边)∴△ADC≌△CBA(SAS)例1:证明:∵AD∥BC∴∠1=∠2(两直线平行,内错角相等)在△DAC和△BCA中DC1AB2B范例学习例2:因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因

无法直接量出A、B两点的距离,现有一足够的米尺。请你设计一种方案,粗略测出A、B两杆之间的距离。。AB范例学习小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结DE,用米尺测出DE的长,这个长度就等于

A,B两点的距离。请你说明理由。AC=DC∠ACB=∠DCEBC=EC∴△ACB≌△DCE∴AB=DE在△ACB和△DCE中BCDEA例3:如图,已知AB=AC,AD=AE。求证:∠B=∠CCEABAD证明

:在△ABD和△ACE中(已知)=(公共角)=(已知)=AEADAAACAB∴△ABD≌△ACE(SAS)∴∠B=∠C(全等三角形对应角相等)范例学习1:如图,已知AB和CD相交与O,OA=OB,OC=OD.说明△OAD与△OBC全等的理由OA=OB(

已知)∠1=∠2(对顶角相等)OD=OC(已知)∴△OAD≌△OBC(S.A.S)解:在△OAD和△OBC中CBADO21巩固练习2.如图所示,根据题目条件,判断下面的三角形是否全等.(1)AC=DF,∠C=∠F,BC=EF;(2)BC=BD,∠ABC=∠ABD.答案

:(1)全等(2)全等巩固练习(1)本节课学习了哪些主要内容?(2)我们是怎么探究出“SAS”判定方法的?用“SAS”判定三角形全等应注意什么问题?课堂小结再见!

小喜鸽
小喜鸽
好文档,与你分享
  • 文档 161806
  • 被下载 28760
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?