【文档说明】《3.4 二元一次方程组的应用》课后习题(-七年级上册数学沪科版.doc,共(6)页,56.000 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-19778.html
以下为本文档部分文字说明:
第1页(共6页)一次方程(组)的应用一.选择题(共2小题)1.如图,八个大小相同的小矩形可拼成下面两个大矩形,拼成图2时,中间留下了一个边长为1的小正方形,则每个小矩形的面积是()A.12B.14C.15D.162.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,
每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360
B.480C.600D.720二.填空题(共2小题)3.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.4.我国古代数学著作《九章算术》中有一道阐述“盈不足
术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.第2页(共6页)三.解答题(共2小题)5.《九章算术》是中国古代数学专著,在数学上有
其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多
11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.6.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求
两种型号粽子各多少千克.第3页(共6页)一次方程(组)的应用参考答案与试题解析一.选择题(共2小题)1.如图,八个大小相同的小矩形可拼成下面两个大矩形,拼成图2时,中间留下了一个边长为1的小正方形,则每
个小矩形的面积是()A.12B.14C.15D.16【分析】设小矩形的长为x,宽为y,观察两个大矩形,找出关于x、y的二元一次方程组,解之即可得出x、y的值,再利用矩形的面积公式即可求出每个小矩形的面积.【解答】解:设小矩形的长为x,宽为
y,根据题意得:,解得:,∴xy=5×3=15.故选:C.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱
会不足240元,如果改成购买7盒方形礼盒和3盒形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()第4页(共6页)A.360B.480C.600D.720【分析】设每盒方形礼盒x元,每盒圆形礼盒y元,根据阿郁身上的钱数不
变得出方程3x+7y﹣240=7x+3y+240,化简整理得y﹣x=120.那么阿郁最后购买10盒方形礼盒后他身上的钱会剩下(7x+3y+240)﹣10x,化简得3(y﹣x)+240,将y﹣x=120计算即可.【解答】解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的
钱有(3x+7y﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+24
0=600(元).故选:C.【点评】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每盒方形礼盒与每盒圆形礼盒的钱数之间的关系是解决问题的关键.二.填空题(共2小题)3.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共
30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.【分析】根据二元一次方程组,可得答案.【解答】解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买2
0个,故答案为:10,20.【点评】本题考查了二次元一次方程组的应用,根据题意找出两个等量关系是解题关键.第5页(共6页)4.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格
是多少元?”该物品的价格是53元.【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:.故答案为:53.
【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三.解答题(共2小题)5.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记
录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡
的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡
者有9人,鸡的价格为70文钱.第6页(共6页)【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B
型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.【分析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解
即可.【解答】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.