中考数学二轮复习专题《相似三角形》练习卷 (含答案)

DOC
  • 阅读 97 次
  • 下载 0 次
  • 页数 11 页
  • 大小 211.492 KB
  • 2023-02-09 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
中考数学二轮复习专题《相似三角形》练习卷 (含答案)
可在后台配置第一页与第二页中间广告代码
中考数学二轮复习专题《相似三角形》练习卷 (含答案)
可在后台配置第二页与第三页中间广告代码
中考数学二轮复习专题《相似三角形》练习卷 (含答案)
可在后台配置第三页与第四页中间广告代码
中考数学二轮复习专题《相似三角形》练习卷 (含答案)
中考数学二轮复习专题《相似三角形》练习卷 (含答案)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 11
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】中考数学二轮复习专题《相似三角形》练习卷 (含答案).doc,共(11)页,211.492 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-188149.html

以下为本文档部分文字说明:

中考数学二轮复习专题《相似三角形》练习卷一、选择题1.若yx=34,则x+yx的值为()A.1B.47C.54D.742.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C

.D.3.如图,AD是△ABC的角平分线,则AB∶AC等于()A.BD∶CDB.AD∶CDC.BC∶ADD.BC∶AC4.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过P点作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有()A.1条B.2条C.3条

D.4条5.如图,在▱ABCD中,AB=4,AD=33,过点A作AE⊥BC于E,且AE=3,连结DE,若F为线段DE上一点,满足∠AFE=∠B,则AF=()A.2B.3C.6D.236.如图,△ABC是面积为18cm2的等边三角形,

被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为()A.4cm2B.6cm2C.8cm2D.10cm27.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P,则GT=()A.2B.22C.2D.18.如图1,在等

腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4B.174C.32D.25二、

填空题9.已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.10.在△ABC中,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=时,以A、D、E为顶点的三角形与△ABC

相似.11.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.12.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高

,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是.13.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则

点P到边AB距离的最小值是.14.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2028个正方形的面积为.三、解答题15.已知:错误!未找到引用源。

(x、y、z均不为零),求错误!未找到引用源。的值.16.如图,已知P是正方形ABCD边BC上一点,BP=3PC,Q是CD的中点,(1)求证:△ADQ∽△QCP;(2)若AB=10,连接BD交AP于点M,交AQ于点N,求BM,QN的长.17.周末,小华和小亮想用所学的数学知识测量家门前小

河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C,A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5

m.测量示意图如图所示.请根据相关测量信息,求河宽AB.18.(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上

,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.19.△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶

点E、F分别在AB、AC上,AD与EF交于点M.(1)求证:AM•BC=AD•EF;(2)设EF=x,EH=y,写出y与x之间的函数表达式;(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并

写出S的最大值.20.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、

C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.参考答案1.D2.B3.A4.C5.D6.B7.B8.B.9.答案为:1+52.10.答

案为:125或53.11.答案为:1:4.12.答案为:4.13.答案为:65.14.答案为:52028.15.解:设错误!未找到引用源。,则错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。∴错误!未找到引用源。.16.证明:(1)∵正方形ABCD中,B

P=3PC,Q是CD的中点∴PC=14﹣BC,CQ=DQ=12CD,且BC=CD=AD∴PC:DQ=CQ:AD=1:2∵∠PCQ=∠ADQ=90°∴△PCQ∽△ADQ(2)∵△BMP∽△AMD∴BM:DM=BP

:AD=3:4∵AB=10,∴BD=102,∴BM=同理QN=535.17.解:∵CB⊥AD,ED⊥AD,∴BC∥DE,∴△ABC∽△ADE,∴BCDE=ABAD,即11.5=ABAB+8.5,解得AB=17(m).经检验,AB=17是原分式方程的解.答:河宽AB

的长为17m.18.解:(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=

BF;(2)解:如图2中,结论:AE=23BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴==,∴A

E=23BF.(3)结论:AE=BF.理由::∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△A

BE∽△BCF,∴==,∴AE=BF.19.解:(1)∵四边形EFGH是矩形,∴EF∥BC,∵AD是△ABC的高,∴AD⊥BC,∴AM⊥EF,∵EF∥BC,∴△AEF∽△ABC,∴(相似三角形的对应边上高的比等于相似比);(2)∵四边形EFGH是矩形,∴

∠FEH=∠EHG=90°,∵AD⊥BC,∴∠HDM=90°=∠FEH=∠EHG,∴四边形EMDH是矩形,∴DM=EH,∵EF=x,EH=y,AD=8,∴AM=AD﹣DM=AD﹣EH=8﹣y,由(1)知,,∴y=8﹣23x(0<x<12);(3)由(2)知,y=8﹣23x,∴S

=S矩形EFGH=xy=x(8﹣23x)=﹣23(x﹣6)2+24,∵a=﹣23<0,∴当x=6时,Smax=24.20.解:(1)在Rt△AOB中,OA=1,tan∠BAO=3,∴OB=3OA=3∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△A

OB,∴OC=OB=3,OD=OA=1.∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为y=﹣x2﹣2x+3;(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l=﹣1,∴E点坐标为(﹣1,0),如图,①当∠CEF=90°时,△CEF∽

△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,△EFC∽△EMP,∴===∴MP=3ME,∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3),∵P在第二象限,∴PM

=﹣t2﹣2t+3,ME=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得t1=﹣2,t2=3,(与P在二象限,横坐标小于0矛盾,舍去),当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3∴P(﹣2,3),

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?