【文档说明】期末复习检测试卷5-七年级上册数学【人教版】.doc,共(21)页,302.000 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-18162.html
以下为本文档部分文字说明:
2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每题3分,共36分)1.(3分)﹣的相反数是()A.B.﹣C.2D.﹣22.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为()A.16.82×1010B.0.1
682×1012C.1.682×1011D.1.682×10123.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是()A.雅B.教C.集D.团4.(3分)已知axb2与aby的和是axby,则(x﹣y)y等于()A.2B.1C.
﹣2D.﹣15.(3分)下列各式正确的是()A.19a2b﹣9ab2=10a2bB.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能
正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是()A.CD=AD﹣BCB.CD=AC﹣DBC.CD=ABD.CD=AB﹣DB8.(3
分)下列解方程步骤正确的是()A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=
129.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于()A.60°B.80°C.50°D.130°10.(3分)
在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是()A.3(52﹣x)=38+xB.52+x=3(38﹣x)C.52﹣3x=
38+xD.52﹣x=3(38﹣x)11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为()A.45°B.55°C.65°D.75°12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,
第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由()个正方形叠成.A.86B.87C.85D.84二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为.14.(3分)若a
的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b=.15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为.16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,
则AC=.17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A=.18.(3分)按照下列程序计算输出值为2018时,输入的x值为.三、解答题(本大题有8个小题
,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2
﹣y),其中|x+2|+(5y﹣1)2=022.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴(同位角相等,两直线平行)∴∠1=
∠(两直线平行,内错角相等)∠1+∠2=180°(已知)∴(等量代换)∴EB∥DG∴∠GDE=∠BEAGD⊥AC(已知)∴(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠﹣∠=90°﹣65°=25°(等式的性质)23.(8分)如图:∠
BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下
面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球
为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福
点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为
数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之
间的数量关系;(3)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.参考答案一、
选择题(每题3分,共36分)1.(3分)﹣的相反数是()A.B.﹣C.2D.﹣2【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反
数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为()A.16.82×1010B.0.1682×1012C.1.682×1011D.
1.682×1012【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1682亿=1.682×1011.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×1
0n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是()A.雅B.教C.集D.团【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:这是一个正方体的平面
展开图,共有六个面,其中面“礼”与面“集”相对,面“雅”与面“教”相对,面“育”与面“团”相对.故选:C.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)已知axb2与aby的和是axby,则(x﹣y
)y等于()A.2B.1C.﹣2D.﹣1【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:axb2与aby是同类项,∴x=1,y=2,∴原式=(﹣1)2=1,故选:B.【点评】本题考查同类项的概念,解题的关键是熟练运
用同类型的概念,本题属于基础题型.5.(3分)下列各式正确的是()A.19a2b﹣9ab2=10a2bB.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x【分析】根据合并同类项的法则进行计算即可.【解答】解:A、19a2b﹣9ab2,
不能合并,故错误;B、3x+3y,不能合并,故错误;C、16y2﹣7y2=9y2,故错误;D、2x﹣5x=﹣3x,故正确;故选:D.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周
长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下
的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不
正确的是()A.CD=AD﹣BCB.CD=AC﹣DBC.CD=ABD.CD=AB﹣DB【分析】根据线段中点的定义可判断.【解答】解:∵C是AB的中点,D是BC的中点∴AC=BC=AB,CD=BD=BC∵CD=AD﹣AC∴CD=AD﹣BC故A正确∵CD=BC﹣DB
∴CD=AC﹣DB故B正确∵AC=BC=AB,CD=BD=BC∴CD=AB故C错误∵CD=BC﹣DB∴CD=AB﹣DB故D正确故选:C.【点评】本题考查了两点之间的距离,熟练掌握线段中点的定义是本题的关键.8.(3分)下列解方程步骤正确的是()A.由2x+4=3x+1,得2x﹣3x=1
+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=12【分析】根据解一元一次方程的基本步骤逐一判断即可得.
【解答】解:A、由2x+4=3x+1,得2x﹣3x=1﹣4,此选项错误;B、由7(x﹣1)=3(x+3),得7x﹣7=3x+9,此选项错误;C、由0.2x﹣0.3=2﹣1.3x,得2x﹣3=20﹣13x,此选项错误;D、由,得2x﹣2﹣x﹣2=12,此选项正确;故
选:D.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤.9.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于()A.60°B.80°C.50°
D.130°【分析】根据平行线的性质与∠3=50°,求得∠BGM=50°,由GM平分∠HGB交直线CD于点M,得出∠BGF的度数,再根据邻补角的性质求得∠1的度数.【解答】解:∵AB∥CD,∴∠BGM=∠3=50°,∵GM平分∠HGB,∴∠BGF=100°,∴∠1=180
°﹣100°=80°.故选:B.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;以及角平分线的定义.10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞
蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是()A.3(52﹣x)=38+xB.52+x=3(38﹣x)C.52﹣3x=38+xD.52﹣x=3(38﹣x)【分
析】设从舞蹈队中抽调了x人参加话剧社,由抽调后话剧社的人数恰好是舞蹈社的人数的3倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设从舞蹈队中抽调了x人参加话剧社,根据题意得:52+x=3(38﹣x).故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一
次方程是解题的关键.11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为()A.45°B.55°C.65°D.75°【分析】先根据补角的定义求出∠CDE
的度数,再由平行线的性质求出∠C的度数,根据余角的定义即可得出结论.【解答】解:∵∠1=155°,∴∠CDE=180°﹣155°=25°.∵DE∥BC,∴∠C=∠CDE=25°.∵∠A=90°,∴∠B=90°﹣25°=65°.故选:C.【点评】本题考查的是平行线的性质,用到
的知识点为:两直线平行,内错角相等.12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,
第(7)个图形由()个正方形叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+„+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;
第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+„+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决
问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+„+.二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为18°.【分析
】设这个角的度数为x,根据余角和补角的定义、结合题意列出方程,解方程即可.【解答】解:设这个角的度数为x,由题意得,180°﹣x=2(90°﹣x)+18°,解得,x=18°,故答案为:18°.【点评】本题考查的是余角和补角,如果两个角的和等于90°,就说
这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b=7.【分析】利用相反数,绝对值的代数意义求出a与b的值,代入原式计算即可求出值.【解答】解:根据题意得:a=3,b=﹣4,则原式=
3﹣(﹣4)=3+4=7,故答案为:7【点评】此题考查了有理数的减法,以及相反数,绝对值,熟练掌握各自的性质是解本题的关键.15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为﹣3.【分析】首先求出x﹣3y的值是多少,然后把它代入5+6y﹣2x,求出算式的值
为多少即可.【解答】解:∵x﹣3y﹣1=3,∴x﹣3y=4,∴5+6y﹣2x=5﹣2(x﹣3y)=5﹣2×4=5﹣8=﹣3故答案为:﹣3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:
①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC=1cm或9cm.【分析】分类讨论:C在线段AB上,C在线段AB的
延长线上,根据线段的和差,可得答案.【解答】解:当C在线段AB上时,由线段的和差,得AC=AB﹣BC=5﹣4=1(cm);当C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=5+4=9(cm),故答案为:1cm或9cm.【点评】本题考查了两点间的距离,分类讨论是解题关
键,以防漏掉.17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A=35°.【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2,进而得到∠A的度数.【解答】解:∵∠1=20°,∠ACB=90°,∴∠3
=90°﹣∠1=70°,∵直线a∥b,∴∠2=∠3=70°,又∵∠2=2∠A,∴∠A=35°,故答案是:35°.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.18.(3分)按照下列程序计算输出值为2018时,输入的x值为202.【分析】利用计算程序得到2
(5x﹣1)=2018,然后解关于x的方程即可.【解答】解:根据题意得2(5x﹣1)=2018,5x﹣1=1009,所以x=202.故答案为202.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号
内的运算.也考查了一元一次方程的应用,三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.【分析】(1)运用乘法的分配律计算可得;(2)根据有理数的混合运算顺
序和法则计算可得.【解答】解:(1)原式=(﹣)×(﹣12)+×(﹣12)+(﹣)×(﹣12)=2﹣9+5=﹣2;(2)原式=﹣5×(﹣1)﹣4×4=5﹣16=﹣11.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌
握有理数的混合运算顺序和法则.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+3=1
2﹣3x+9,移项合并得:5x=18,解得:x=3.6;(2)去分母得:9x﹣6=24﹣8x+4,移项合并得:17x=34,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键
.21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=0【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=x2﹣6x2+
12y+2x2﹣2y=﹣3x2+10y,∵|x+2|+(5y﹣1)2=0,∴x=﹣2,y=,则原式=﹣12+2=﹣10.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠AB
C,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(
等量代换)∴EB∥DG同旁内角互补,两直线平行∴∠GDE=∠BEA两直线平行,同位角相等GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA﹣∠AEF=
90°﹣65°=25°(等式的性质)【分析】根据平行线的性质和判定可填空.【解答】解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC
+∠2=180°(等量代换)∴EB∥DG(同旁内角互补,两直线平行)∴∠GDE=∠BEA(两直线平行,同位角相等)GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°
(已知)∴∠1=∠BEA﹣∠AEF=90°﹣65°=25°(等式的性质)故答案为:EF∥BC,∠EBC,∠EBC+∠2=180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE,∠BEA,∠AEF.【点评】本题考查了平行线的判定和性质,灵活运用平行线的性质和判定解决问题
是本题的关键.23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠
BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【解答】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=32°,∵DF∥BC,∴∠CDF=∠BCD=3
2°.【点评】考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好
!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减
200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?【分析】(1)设篮球的单价为x元/个,排球的单价为y元/个,根据每个排球比每个篮球便宜30元及570元购买3个篮球和5个排球,即可得出关于x、y的二元一次方程组,解之即可得出
结论;(2)分别求出按套装打折购买及按满减活动购买所需费用,比较后即可得出结论.【解答】解:(1)设篮球的单价为x元/个,排球的单价为y元/个,根据题意得:,解得:.答:篮球的单价为90元/个,排球的单价为60元/个.(2)按套装打折购买需付费用为:10×(90+6
0)×0.8+5×90+3×60=1830(元),按满减活动购买需付费用为:15×90+13×60﹣200=1930(元).∵1830<1930,∴按套装打折购买更划算.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)分别求出按套装
打折购买及按满减活动购买所需费用.25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A
的幸福点C所表示的数应该是﹣4或2;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C就是M、N的幸福中心,则C所表示的数可以是﹣2或﹣1或0或1或2或3或4(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的
数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?【分析】(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.【解答
】解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)4﹣(﹣2)=6,故C所表示的数可以是﹣2或﹣1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意
有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理
解新定义.26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问
的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CB
G,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥B
C,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+
∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠G
BF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°
,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点评】本题主要考查了平行线的性质的运
用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.