【文档说明】12.3《角的平分线的性质》PPT课件1-八年级上册数学人教版.ppt,共(16)页,790.000 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-17295.html
以下为本文档部分文字说明:
12.3角的平分线的性质(1)复习提问1、角平分线的概念一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。BoCA12BoCA12B2.下图中能表示点P到直线l的距离的是线段PC的长如图,是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和A
D沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?经过上面的探索,你能得到作已知角的平分线的方法吗?小组内互相交流一下吧!探究:想一想ABMNC作法:⑴以O为圆心,任意长为半径作弧,交OA于M,交OB于N.⑵分别以M,N
为圆心,大于的长为半径作弧,两弧在∠AOB的内部交于点C.⑶作射线OC,射线OC即为所求.12MN0温馨提示:作角平分线是最基本的尺规作图,大家一定要掌握噢!试一试由上面的探究可以得出作已知角的平分线的方法已知:∠A
OB.求作:∠AOB的平分线.1〉平分平角∠AOB2〉通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?3〉结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。ABOCD探究角平分线的性质(1
)实验:将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?(2)猜想:角的平分线上的点到角的两边的距离相等.已知:OC是∠AOB的平分线,点P在OC上,PD⊥
OA,PE⊥OB,垂足分别是D、E.求证:PD=PE.证一证OPEABDc角的平分线上的点到角的两边的距离相等.角平分线上的点到角的两边的距离相等你能用文字语言叙述一下发现的结论吗?说一说PD⊥OA,PE⊥O
B∵OP平分∠AOB∴PD=PE.用符号表示为:OPEABDcOPEABD证明几何命题的一般步骤:1、明确命题的已知和求证2、根据题意,画出图形,并用数学符号表示已知和求证;3、经过分析,找出由已知推出求证
的途径,写出证明过程。角平分线的性质角的平分线上的点到角的两边的距离相等。BADOPEC定理应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离。定理的作用:证明线段相等。1、如图,△ABC的角平分线BM,CN相交于点O,求证:点O到三边AB、BC、CA的距离相等证明:过点
O作OD⊥AB于D,OE⊥BC于E,OF⊥AC于F∵BM为△ABC的角平分线∴OD=OE同理,OE=OF.∴OD=OE=OF即点O到三边AB、BC、CA的距离相等用一用FED练一练(1)判断正误,并说明
理由:(1)如图1,P在射线OC上,PE⊥OA,PF⊥OB,则PE=PF.(2)如图2,P是∠AOB的平分线OC上的一点,E、F分别在OA、OB上,则PE=PF.(3)如图3,在∠AOB的平分线OC上任取一点P,若P到OA的距离为
3cm,则P到OB的距离边为3cm.已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:EB=FC.BAEDCF练一练(2)回味无穷用尺规作角的平分线
.定理(文字语言):角的平分线上的点到这个角的两边的距离相等.符号语言:∵∠1=∠2PD⊥OA,PE⊥OB(已知)∴PD=PE(角的平分线上的点到这个角的两边距离相等).思考:要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺
1:20000)SO公路铁路