12.2.2《“边角边”判定三角形全等》PPT课件8-八年级上册数学人教版

PPT
  • 阅读 44 次
  • 下载 1 次
  • 页数 24 页
  • 大小 850.000 KB
  • 2022-11-17 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
此文档由【小喜鸽】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
12.2.2《“边角边”判定三角形全等》PPT课件8-八年级上册数学人教版
可在后台配置第一页与第二页中间广告代码
12.2.2《“边角边”判定三角形全等》PPT课件8-八年级上册数学人教版
可在后台配置第二页与第三页中间广告代码
12.2.2《“边角边”判定三角形全等》PPT课件8-八年级上册数学人教版
可在后台配置第三页与第四页中间广告代码
12.2.2《“边角边”判定三角形全等》PPT课件8-八年级上册数学人教版
12.2.2《“边角边”判定三角形全等》PPT课件8-八年级上册数学人教版
还剩10页未读,继续阅读
【这是VIP专享文档,需开通VIP才能继续阅读】
/ 24
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
文本内容

【文档说明】12.2.2《“边角边”判定三角形全等》PPT课件8-八年级上册数学人教版.ppt,共(24)页,850.000 KB,由小喜鸽上传

转载请保留链接:https://www.ichengzhen.cn/view-17284.html

以下为本文档部分文字说明:

我们学过哪几种判定三角形全等的方法?1、全等三角形概念:三条边对应相等,三个角对应相等。2、全等三角形判定条件(一)三边对应相等的两个三角形全等。简称“边边边”或“SSS”问题:如图有一池塘。要测池塘两端A、B的距离,可无法直接达到,因此这两点的距离无法直接量出。你能想出办法来吗?ABA

BCED在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA延长BC并延长至E使CE=CB连结ED,那么量出DE的长,就是A、B的距离.为什么?三角形全等判定方法2用符号语言表达为:在△ABC与△DEF中∴△ABC≌△DEF(S

AS)两边和它们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”)FEDCBAAC=DF∠C=∠FBC=EF1.画∠MA′N=∠A2.在射线AM,AN上分别取A′B′=AB,A′C′=AC.3.连接B′C′,得∆A′B′C′

.已知△ABC是任意一个三角形,画△A′B′C′使∠A′=∠A,A′B′=AB,A′C′=AC.画法:边角边公理有两边和它们的夹角对应相等的两个三角形全等.可以简写成“边角边”或“SAS”S——边A——角1.在下列图中找出全等三角形ⅠⅥ30ºⅣⅣ5

cmⅡⅤ30ºⅧⅦⅢ30ºⅢ练习一2.在下列推理中填写需要补充的条件,使结论成立:(1)如图,在△AOB和△DOC中AO=DO(已知)______=________()BO=CO(已知)∴△AOB≌△DOC()∠AOB∠DO

C对顶角相等SASCABDO例1已知:如图:AC=AD,∠CAB=∠DAB.求证:△ACB≌△ADB.ABCD证明:△ACB≌△ADB这两个条件够吗?例1已知:如图,AC=AD,∠CAB=∠DAB.求证:

△ACB≌△ADB.ABCD证明:△ACB≌△ADB.这两个条件够吗?还要什么条件呢?例1已知:如图,AC=AD,∠CAB=∠DAB.求证:△ACB≌△ADB.ABCD证明:△ACB≌△ADB.这两个条件够吗?还要什么条件呢?还要一条边例1已知:如图,AC=AD,∠CAB=∠DAB.求证:

△ACB≌△ADB.ABCD证明:在△ACB和△ADB中AC=AD(已知)∠CAB=∠DAB(已知)AB=AB(公共边)∴△ACB≌△ADB(SAS)ABCED在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA延长BC并延长至E使CE=CB

连结ED,那么量出DE的长,就是A、B的距离.为什么?回到初始问题???证明三角形全等的步骤:1.写出在哪两个三角形中证明全等。(注意把表示对应顶点的字母写在对应的位置上).2.按边、角、边的顺序列出三个条件,用大括号合在

一起.3.证明全等后要有推理的依据.练习:3.已知:如图,AB=ACAD=AE.求证:△ABE≌△ACD.证明:在△ABE和△ACD中,AB=AC(已知),AE=AD(已知),∠A=∠A(公共角),∴△ABE≌△ACD(SAS).BEACD4.如图

:己知AD∥BC,AE=CF,AD=BC,E、F都在直线AC上,试说明DE∥BF。FCBEDA●●●●思考题:有两边和其中一边的对角对应相等的两个三角形是否全等?动手画一画课堂小结1.边角边公理:有两边和它们的_

_____对应相等的两个三角形全等(SAS)夹角2.边角边公理的应用中所用到的数学方法:证明线段(或角相等)证明线段(或角)所在的两个三角形全等.转化1.若AB=AC,则添加什么条件可得△ABD≌△ACD?△ABD≌△ACDAD=ADAB=ACABDC∠BAD=∠CADSAS拓展2

.已知如图,点D在AB上,点E在AC上,BE与CD交于点O,△ABE≌△ACDSASAB=AC∠A=∠AAE=AD要证△ABE≌△ACD需添加什么条件?BEAACDO2.已知如图,点D在AB上,点E在AC上,BE与CD交于点O,SASOB=OC∠BOD=∠COEOD=OE要证△BOD≌

△COE需添加什么条件?BEAACDO△BOD≌△COE3.如图,要证△ACB≌△ADB,至少选用哪些条件才可以?ABCD△ACB≌△ADBSAS证得△ACB≌△ADBAB=AB∠CAB=∠DABAC=AD3.如图,要证△A

CB≌△ADB,至少选用哪些条件可ABCD△ACB≌△ADBSAS证得△ACB≌△ADBAB=AB∠CBA=∠DBABC=BD

小喜鸽
小喜鸽
好文档,与你分享
  • 文档 161806
  • 被下载 28760
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?