【文档说明】2023届广西联合调研一模理数试卷及解析.pdf,共(9)页,3.636 MB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-170140.html
以下为本文档部分文字说明:
高三理科数学参考答案第1页共5页2023年高考桂林、崇左市联合调研考试理科数学参考答案1~12:CBAAABCDAABA13.114.4315.2.816.)12(17.解:(1)由题中表格可得22列联表如下:阅读爱好者非阅读爱好
者合计男生451055女生301545合计7525100……………………………………………………………………………………………………2分由题意得K2=……………………………………………………………………………………………………5分所以在犯错误的概率不超过的前提下,不能
认为“阅读爱好者”与性别有关.……………………………………………………………………………………………………6分(2)根据检测得分不低于80分的人称为“阅读达人”,则这100名学生中的男生“阅读达人”中,按分层抽样的方式抽取,90,80内应抽取3
人,100,90内应抽取2人,…………………………7分所以,X的取值为0,1,2101)0(3533CCXP,53106)1(351223CCCXP,103)2(352213CCCXP…………………………10分所以X的分布列为:X01
2P10153103…………………………………………………………………………11分5610325311010)(XE所以X的数学期望是65……………………………………………………………………12分18.解:(1)nnnaS21nnnn
SSS21……………………………………1分nnnSS221212211nnnnSS…………………………………………………………………………3分又11a,2121S…………………………………………………………………………4分所以数列n
nS2是以21为首项和公差的等差数列.………………………………5分高三理科数学参考答案第2页共5页z(2)由(1)知:2)121212nnSnn(所以12nnnS…………………………………………
……………………………6分112222122nnnnnnaSnann又11a满足上式212nnannN…………………………………………8分因为nN,62nnna所以
26122nnnn所以61,4nnnN………………………………9分记614nnfnnN则只需minfn…………………………………………10分又
fn在51,2上单调递减,在5,2上单调递增,又因为nN所以min233fnff所以3所以的最大值为3…………………………………………12分19.(1)证明:连接AOO
为BC中点,ABC为等边三角形AOBC点P在底面ABC上的射影为点OPO面ABCPOBC……………………………………………………2分由BCAO,BCPO,AOPOO,AO面AP
O,PO面APO得BC面APO……………………………………………………4分AM面APOBCAM………………………………………………5分(2)由已知及(1)可知,OB,OA,OP两两互相垂直以OB,AO,OP所在直线分别为x,y,z轴建立如图所示的
空间直角坐标系,…………………………………………6分则0,3,0A,3,0,0BBO为PB在底面ABC上的射影PBO为PB与面ABC所成角,3PBO,3,PO……………………………………7分0,0,3P,假设符合
题意的点M存在,且设0,0,03Mcc来源:高三答案公众号高三理科数学参考答案第3页共5页设,,mxyz为面PAB的法向量,则0PAm,0PBm0,3,3PA,3,0,3
PB330330yzxz,令1y,则3,1,1m………………………………8分设的法向量,为面MABzyxn),,(111则0ABn,0AMn3,3,0AB
,0,3,AMc,1,0303311111yczyyx令则33,1,nc…………………………9分二面角PABM的余弦值为31010310cos,10mn……………………………………
………………10分233131010954cc,化简得2448630cc解得32c或212c(舍)………………………………………………11分30,0,2M符合题意,此时点M为PO的中点.………………………………12分20.【解】(1)将)23,3(),0,2(
BA代入椭圆C:012222babyax中,1022222ba············································································
1分143322ba··············································································2分得,3,2ba···············
····································································3分故椭圆C方程为22143xy.············································
····················4分(2)设直线1122:,,,,lykxmPxyQxy,················································5分由22222,43841203412ykxmk
xkmxmxy得,122212284341243kmxxkmxxk,·····························································
·····················6分2222226444341219248144kmkmkm,又11212112,222ykxmkxmkkxxx高三理科数学参考答案第4页共5页故12121212121212122
242224kxxkxxmxxmkxmkxmkkxxxxxx2222228241681612412161612kmkkmkmkmmmkmk223644mk
mkmk,·················································································8分由0321kkkk,得0321)(kkk,得22320mkmk,故20
2mkmkmk或mk,·····················································9分①当2mk时,直线:22lykxkkx,过定点2,0A,与已知不符,舍去;······························
··········································································10分②当mk时,直线:1lykxkkx,过定点1,0,即直线l过左焦点,此时222192481441441440kmk
,符合题意.所以FPQ△的周长为48a.·······································································12分21.解:(1)由
题知:xxexxhxln)(,其定义域为),(0xxxxexexxexxh))(1(111)('…………………………………………………1分令0xxexx,则'10xxe
xxex在0,上单调递增010x0xex…………………………………………………………………………………3分设10)('xxh,100)('xxh所以)(xh在)1,0(上单调递减,在),1(上单调递减…
…………………………………4分min111hxhe………………………………………………………………………5分(2)设axxexxgxfxFaxln)()()(axxeaxxlnln设a
xxtln,则,易知tGtet在R上单调递增要使方程0)()(xgxf有两个不同的实根,则函数tetGt)(存在1个零点…………6分,则且个零点,设为上存在,在所以函数21210,,20lnxxxxaxxt且0a0ln,0ln2211axxaxx所
以)(lnln2121xxaxx即axxxx1lnln2121……………………………………………………7分要证axx221,即证2121xxa即证高三理科数学参考答案第5页共5页2lnln212121xxxxxx2lnln212121xxxxxx
2ln11212121xxxxxx……………………8分设)1,0(,21mmxx,设2ln11)(mmmm所以0)1(2)1(21)1(2)(222'mmmmmm所以)(
m在)1,0(单调递减所以0)1()(m,即02ln11mmm故2lnln212121xxxxxx…………………………………………………10分所以2121xxa,即axx221.………………………12分22
.解:(1)由22cos62得22cos226.22222222222(cossin)2()622636xyxyxyxy.所以曲线C的直角坐标方程为16222yx.……………………………………
5分(2)设直线l的参数方程为mymx221221(m为参数)将l的参数方程代入曲线C的普通方程,整理得:0122mm,1,22121mmmm,……………………………………………………8分6424)(2122121mmmmmmAB.………
……………………………10分23.解:(1)化简得:12)(axaxxf.当3a时,2)5()3(53)(xxxxxf,当3≤x≤5时等号成立,所以)(xf的最小值为2;………………………………………………5
分(2)由基本不等式:8)3212()212(2123mmmmmmmm,当且仅当mm212,即4m时,等号成立.又因为1)12()(12)(aaxaxaxaxxf,当且仅当210xaxa时,等号成立.………………………………………
…8分所以,18a18a或18a9a或7a…………………………………………………………………………10分注:第17—23题提供的解法供阅卷时评分参考,考生其它解法可相应给分。来源:高三答案公众号