高一数学必修一必修二知识点

DOC
  • 阅读 90 次
  • 下载 0 次
  • 页数 11 页
  • 大小 215.453 KB
  • 2023-01-08 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.99 元 加入VIP免费下载
此文档由【小喜鸽】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
高一数学必修一必修二知识点
可在后台配置第一页与第二页中间广告代码
高一数学必修一必修二知识点
可在后台配置第二页与第三页中间广告代码
高一数学必修一必修二知识点
可在后台配置第三页与第四页中间广告代码
高一数学必修一必修二知识点
高一数学必修一必修二知识点
还剩5页未读,继续阅读
【这是VIP专享文档,需开通VIP才能继续阅读】
/ 11
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.99 元 加入VIP免费下载
文本内容

【文档说明】高一数学必修一必修二知识点.docx,共(11)页,215.453 KB,由小喜鸽上传

转载请保留链接:https://www.ichengzhen.cn/view-160262.html

以下为本文档部分文字说明:

必修1知识点第一章、集合与函数概念§1.1.1、集合1、集合三要素:确定性、互异性、无序性。2、常见集合:正整数集合:或;整数集合:;有理数集合:;实数集合:.3、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合

B中的元素,则称集合A是集合B的子集。记作.2、如果集合,但存在元素,且,则称集合A是集合B的真子集.记作:AB.3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.空集是任何非空集合的真子集.4、如果集合A中含有n个元素,则集合A有个子集.§1.1.3、

集合间的基本运算1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:.2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:.3、全集、补集:§1.2.1、函数的概念1、一个函数的构成

要素为:定义域、对应关系、值域.2、如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法解析法、图象法、列表法.求解析式的方法:1.换元法2.配凑法3.待定系数法4.方程组法§1.3.1、单调性与最大(小)值注意函数单调性证明的一般格式:解:设且

,则:=…五个步骤:取值,作差,化简,定号,小结§1.3.2、奇偶性1、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为偶函数.偶函数图象关于轴对称.2、一般地,如果对于函数的定义域内任意一个,都有,那么就称函数为奇函数.奇函数图象

关于原点对称.第二章、基本初等函数§2.1.1、指数与指数幂的运算1、一般地,如果,那么叫做的次方根。其中.2、当为奇数时,;当为偶数时,.3、⑴;⑵;4、运算性质:⑴;⑵;⑶.§2.1.2、指数函数及其性质1、记住

图象:§2.2.1、对数与对数运算1.2.3.,4.当时:(1);(2);(3)5.换底公式:.§2..2.2、对数函数及其性质1、记住图象:§2.3、幂函数1、几种幂函数的图象:2、幂函数单调性:时,在

区间上为增函数;时,在区间上为减函数;3、比较多个值的大小时,常借助于-1,1,0作为中间值.第三章、函数的应用§3.1.1、方程的根与函数的零点1、方程有实根函数的图象与轴有交点函数有零点.2、性质:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么,函数在区间内有零点,即存在,使得,这

个也就是方程的根.§3.1.2、用二分法求方程的近似解§3.2.1、几类不同增长的函数模型§3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2知识点第一部分立

体几何1.三视图与直观图:画三视图要求:正视图与俯视图长对正;正视图与侧视图高平齐;侧视图与俯视图宽相等。斜二测画法画水平放置几何体的直观图的要领。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相

平行,由这些面所围成的多面体叫做棱柱。(侧棱相等,侧面是平行四边形)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面所围成的多面体叫做棱锥。棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。(侧棱延长线交于一点)2.表(侧)面积与体积公式:

⑴柱体:①表面积:S=S+2S;②侧面积:圆柱S=;③体积:V=Sh⑵锥体:①表面积:S=S+S;②侧面积:圆锥S=;③体积:V=Sh:⑶台体:①表面积:S=S+S②侧面积:圆台S=③体积:V=(S+)h;⑷球体:①表面积:S=;②体积:V=.3.线线位置关系:不同在任何一个平面内的两直

线称为异面直线。线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。面面位置关系:平行、相交。4.四个公理:①如果一条直线上的两点在一个平面内,那么这条直线在此平面内。②过不在一条直线上的三点,有且仅有一个平面。③如果两个不重合的

平面有一个公共点,那么它们有且仅有一条过该点的公共直线。④平行于同一直线的两条直线平行。5.等角定理:空间中如果两个角的两边对应平行,那么这两个角相等或互补。6.直线与平面平行:判定平面外一条直线与此平面

内的一直线平行,则该直线与此平面平行。性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。7.平面与平面平行:判定若一个平面内有两条相交直线与另一个平面平行,则这两个平面平行。性质①如果两个平面平行,则其中一个面内的任一直线与另一个平面平行。②如果两个平行平面同时与第三个

平面相交,那么它们交线平行。8.直线与平面垂直:判定一条直线与一个平面内的两相交直线垂直,则这条直线与这个平面垂直。性质①垂直于同一平面的两条直线平行。②两平行直线中的一条与一个平面垂直,则另一条也与

这个平面垂直。9.平面与平面垂直:判定一个平面过另一个平面的垂线,则这两个平面垂直。性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。10.三角形四“心”(1)为的外心(各边垂直平分线的交点).(2)为的重心(各边中线

的交点).(3)为的垂心(各边高的交点).(4)为的内心(各内角平分线的交点).11.位置关系的证明(主要方法):⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。⑵直线与平面平行:①线面平行的判定定理;②面面平行。⑶平面与平面平行:①面

面平行的判定定理及推论;②垂直于同一直线的两平面平行。⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。⑸平面与平面垂直:①定义:两平面所成二面角为直角;②面面垂直的判定定理。12.角:(步骤--Ⅰ.找或作角;Ⅱ.求角)⑴异面直线所成角的求法:

平移法:平移直线,构造三角形;⑵直线与平面所成的角:直接法(利用线面角定义)(3)平面与平面所成二面角:在半平面分别作垂直于棱的射线13.距离:(步骤--Ⅰ.找或作垂线段;Ⅱ.求距离)点到平面的距离:等体积法14.一些结论(1)长方体从一个顶点出发的三条棱长分别

为a,b,c,则长方体对角线长为,全面积为,体积。(2)正方体的棱长为a,则正方体对角线长为,全面积为,体积V=。(3)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长.球与正方体的组合体:正

方体的内切球的直径是正方体的棱长.正方体的外接球的直径是正方体的体对角线长.(4)正四面体的性质:设棱长为,则正四面体的:高:;②对棱间距离:;③内切球半径:;④外接球半径:。第二部分直线与圆1.斜率公式:,其中、.斜率与倾斜角的

关系:(1)斜率存在:;(2)斜率不存在,2.直线方程的五种形式:(1)点斜式:(直线过点,且斜率为).(2)斜截式:(为直线在轴上的截距).(3)两点式:(、,).(4)截距式:(其中、分别为直线在

轴、轴上的截距,且).(5)一般式:(其中A、B不同时为0).3.两条直线的位置关系:(1)若,,斜率存在的情况,则:①∥,且;②.(2)若,,则:①且;②(3)与直线平行的直线方程可设为与直线垂直的直线方程可设为4.距离公式:(1)点,之间的距

离:(2)点P(x0,y0)到直线Ax+By+C=0的距离:(3)两条平行线Ax+By+C1=0与Ax+By+C2=0的距离(两直线A,B相同)5.圆的方程:⑴标准方程:,圆心是,半径是⑵一般方程:(注:Ax2+Bxy+Cy2+Dx

+Ey+F=0表示圆A=C≠0且B=0且D2+E2-4AF>06.圆的方程的求法:⑴待定系数法;⑵几何法。7.点、直线与圆的位置关系:(主要掌握几何法)⑴点与圆的位置关系:(表示点到圆心的距离)①点在圆上;②点在圆内;③

点在圆外。⑵直线与圆的位置关系:(表示圆心到直线的距离)①相切;②相交;③相离。⑶圆与圆的位置关系:(表示圆心距,表示两圆半径)①外离;②外切;③相交;④内切;⑤内含。8.空间中两点间距离公式:9.过两条相交直线,交点

的直线方程看,可设为(不含直线)10.弦长公式:两圆公共弦直线方程:两圆方程相减,注意两圆二次项系数相同高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如

:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用

拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R1)列举法:{a

,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR|x-3>2},{x|x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素

的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或B

A2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实例:设A={x|x-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。AA②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或B

A)③如果AB,BC,那么AC④如果AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。◆有n个元素的集合,含有2个子集,2个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的

元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB

}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,即CA=韦恩图示性质AA=AAΦ=ΦAB=AABAABBAA=AAΦ=AAB=BAABAABB(CA

)(CB)=C(AB)(CA)(CB)=C(AB)A(CA)=UA(CA)=Φ.二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B

中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合

{f(x)|x∈A}叫做函数的值域.2.值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、

B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:(1)集

合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.(3)分段函

数的定义域是各段定义域的交集,值域是各段值域的并集.二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x,x,当x<x时,都有f(x)<f(x),那么就说f(x)在区间D

上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x,x,当x<x时,都有f(x)>f(x),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y

=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:任取x,x∈D,且x<x;作差f(x)-f(

x);变形(通常是因式分解和配方);定号(即判断差f(x)-f(x)的正负);下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相

关,其规律:“同增异减”8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(

x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其是否关于原点对称;确定f(-x)与

f(x)的关系;作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.第二章基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈.◆

负数没有偶次方根;0的任何次方根都是0,记作。当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:,◆0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)·;(2);(3).(二)指数函数及其性质1、指数函数的概念:

一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>10<a<1定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非

偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1.对数的概念:一般地,

如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:注意底数的限制,且;;注意对数的书写格式.两个重要对数:常用对数:以10为底的对数;自然对数:以无理数为底的对数的对数.◆指数式与对数式的互化幂值

真数=N=b底数指数对数(二)对数的运算性质如果,且,,,那么:·+;-;.注意:换底公式(,且;,且;).利用换底公式推导下面的结论(1);(2).(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:对数函数的定义与指数函数类似

,都是形式定义,注意辨别。如:,都不是对数函数,而只能称其为对数型函数.对数函数对底数的限制:,且.2、对数函数的性质:a>10<a<1定义域x>0定义域x>0值域为R值域为R在R上递增在R上递减函数图象都过定点(

1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上

是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.第三章函数的应用一、方程的根与函数的零点1、函数零点

的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:(代数法)求方程的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用

函数的性质找出零点.4、二次函数的零点:二次函数.(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程无实根,二次

函数的图象与轴无交点,二次函数无零点.

小喜鸽
小喜鸽
好文档,与你分享
  • 文档 161806
  • 被下载 27262
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?