【文档说明】《二次函数在销售方面的应用》PPT课件2-九年级下册数学北师大版.ppt,共(12)页,679.500 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-15325.html
以下为本文档部分文字说明:
1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.顶点坐标为(h,k)①当a
>0时,y有最小值k②当a<0时,y有最大值k二次函数y=a(x-h)2+k(a≠0)【例1】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可
以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【例题】【解析】设销售单价为x(x≤13.5)元,那么销售量可以表示为:件;每件T恤衫的利润为:元;所获总利润可以表示为:元;∴当销售单价为元时,可以获得最大利润,最大利润是元.25
.9即y=-200x2+3700x-8000=-200(x-9.25)2+9112.59112.5(x-2.5)500+200(13.5-x)(x-2.5)[500+200(13.5-x)]1.某商店经
营衬衫,已知所获利润y(元)与销售的单价x(元)之间满足关系式y=–x2+24x+2956,则获利最多为______元.2.某旅行社要组团去外地旅游,经计算所获利润y(元)与旅行团人员x(人)满足关系式y=–2x2+80x+28400,要使所获营业额最大,则此旅行团有_
______人.203100【跟踪训练】3.(青海·中考)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现
该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程得:(5+x)(200-10x)=1500,解得:x1=10,x2=5.因为要顾客
得到实惠,5<10所以x=5.答:每千克应涨价5元.(2)设商场每天获得的利润为y元,则根据题意,得y=(x+5)(200-10x)=-10x2+150x+1000,当时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场
获利最多.x=b/2a=150/2.(-10)=7.51.(株洲·中考)某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米
C.2米D.1米【解析】选A.抛物线的顶点坐标为(2,4),所以水喷出的最大高度是4米.x(米)y(米)2.(青岛·中考)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看
作一次函数:(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单
价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)10500.yx【规律方法】先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,
根据图象求出最值.“何时获得最大利润”问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润.