《图形的旋转作图》教学设计1-八年级下册数学北师大版

DOC
  • 阅读 54 次
  • 下载 1 次
  • 页数 6 页
  • 大小 76.500 KB
  • 2022-11-16 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
此文档由【小喜鸽】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
《图形的旋转作图》教学设计1-八年级下册数学北师大版
可在后台配置第一页与第二页中间广告代码
《图形的旋转作图》教学设计1-八年级下册数学北师大版
可在后台配置第二页与第三页中间广告代码
《图形的旋转作图》教学设计1-八年级下册数学北师大版
可在后台配置第三页与第四页中间广告代码
在线阅读已结束,您可下载此文档阅读剩下的3 已有1人下载 下载文档0.90 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档0.90 元 加入VIP免费下载
文本内容

【文档说明】《图形的旋转作图》教学设计1-八年级下册数学北师大版.doc,共(6)页,76.500 KB,由小喜鸽上传

转载请保留链接:https://www.ichengzhen.cn/view-14993.html

以下为本文档部分文字说明:

第三章图形的平移与旋转2.图形的旋转(一)一、教学目标知识与能力:通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣

赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,

特别是,对应点到旋转中心的距离相等.二、教学过程第一环节创设情境,引入新知演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,

引出课题:“生活中的旋转”。向学生展示有关的图片:(1)时钟上的秒针在不停的转动;(并介绍顺时针方向和逆时针方向)(2)大风车的转动;(3)飞速转动的电风扇叶片;(4)汽车上的括水器;(5)由平面图形转动而产生的奇妙图案。第二环节探索新知,形成概念1.建立旋转的概念

(1)试一试,请同学们尝试用自己的语言来描述以下旋转.抽象出点的旋转AB(图1)O问题:单摆上小球的转动由位置A转到B,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?图1:在同一平面内,点A绕着定点O旋转某一角度得到点B;图2:在同一平面内,线段AB绕着定点O旋转某一角

度得到线段CD;图3:在同一平面内,三角形ABC绕着定点O旋转某一角度得到三角形DEF。观察了上面图形的运动,引导学生归纳图形旋转的概念;像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转(rotation).点O叫做旋转中心,转动的角叫做旋转角。重点突出旋转的三个要素:旋转中心

、旋转方向和旋转角度。(2)情景问题:①请同学们观察图3,点A,线段AB,∠ABC分别转到了什么位置?②请找出图3中其他的对应点、对应线段、对应角,并指出旋转中心和旋转角度。2.应用旋转的概念解决问题这一环节让学生进行问题的研究与解答,培养应用数学知识

的意识及解决数学问题的能力。(1)如图,△ABO绕点O旋转得到△CDO,则:点B的对应点是点_____;线段OB的对应线段是线段______;线段AB的对应线段是线段______;∠A的对应角是______;∠B的对应角是___

___;旋转中心是点______;旋转的角是______。CABOD抽象出线的旋转·OABCD(图2)(2)如图,如果正方形CDEF与正方形ABCD是一边重合的两个正方形,那么正方形CDEF能否看成是正方形ABCD旋转得到?如果能,请指出旋转中心、旋转方向、旋转

角度及对应点。(3)如图,香港特别行政区区旗中央的紫荆花图案由5个相同的花瓣组成,它是由其中的一瓣经过几次旋转得到的?旋转角∠AOB多少度?你知道∠COD等于多少度吗?设计意图:加深对旋转概念的理解,及时巩固新知识,对于第2题要注重引导学生多角度分析解决,第

3题求∠AOB的度数学生可以根据五分周角容易得到,而学生在求∠COD的度数时,更多的是凭数学直觉或猜测。由此,可以比较自然地引导学生通过实验操作,利用度量等方法去探究旋转的有关性质。第三环节实践操作,再探新知做一做:DCABEF··ABODC

·OABCFDE如图,在硬纸板上,挖出一个三角形ABC,再挖一个小洞O作为旋转中心,硬纸板下面放一张白纸。先在纸上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形(△DEF),移开硬纸板。问题:请指出旋转中心和各对应点,哪

一个角是旋转角?1.从我们看到的旋转现象以及你所完成的实验中,你认为旋转主要因素是什么?2.在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?量一量线段OA与线段OD的关系怎样(这里包括数量关系和位置关系),线段OB和OE,OC和OF呢?AB

与DE呢?3.你能通过度量角的方法得出旋转角度吗?你准备度量哪个角?探索得出下列性质:1.旋转前后的图形全等;2.对应点到旋转中心的距离相等;3.对应点与旋转中心连线段的夹角等于旋转角。第四环节巩固新知,形成技能1.如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得到四边形DOEF.在这个旋

转过程中:(1)旋转中心是什么?(2)经过旋转,点A,B分别移动到什么位置?(3)旋转角是什么?(4)AO与DO的长有什么关系?BO与EO呢?(5)∠AOD与∠BOE有什么大小关系?2.如图,正方形ABCD中,E是AD上一点,

将△CDE逆时针旋转后得到△CBM.OABDECF如连接EM,那么△CEM是怎样的三角形?3.如图:P是等边ABC内的一点,把ABP通过旋转分别得到BQC和ACR,(1)指出旋转中心、旋转方向和旋转角度?(2)ACR是否可以直接通过把

BQC旋转得到?目的是让学生通过观察图形的特点,发现图形的旋转关系,巩固旋转的性质。(2)若PA=5,PC=4,PB=3,则△PQC是什么三角形?第五环节回顾反思,深化提高引导学生从以下几个方面进行小结:⑴这节课你学到了什么?⑵对自己的学习情况进行评价。第六环节分层作业,促进发展A类:课本习题3

.4第1,2,3题;B类:课本习题3.4第2题;试一试的第2题;在网上收集一些用旋转制作的漂亮图案,再试着用今天学到的旋转知识自己设计一个漂亮的图案。三、教学反思本设计力图:以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主

体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认知规律。教学活动中有声、有色、有动感的画面,不仅叩开学生思维之门,也打开了他们的心灵之窗,使他们在欣赏、享受中,在美的熏陶中主动的、轻松愉快的

CABDEMARPBQC获得新知。例子展现,多方渗透为了使抽象的概念具体化,通俗易懂,本节列举了大量生活中的例子,培养学生的发散思维,也增强学生用数学的意识。

小喜鸽
小喜鸽
好文档,与你分享
  • 文档 161806
  • 被下载 27268
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?