【文档说明】高中数学必修第一册课时40《公式五和公式六》分层作业-2019人教A版.doc,共(5)页,68.500 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-115744.html
以下为本文档部分文字说明:
1课时分层作业(四十)公式五和公式六(建议用时:60分钟)[合格基础练]一、选择题1.若sin(3π+α)=-12,则cos7π2-α等于()A.-12B.12C.32D.-32A[∵sin(3π+α
)=-sinα=-12,∴sinα=12.∴cos7π2-α=cos3π2-α=-cosπ2-α=-sinα=-12.]2.已知sin10°=k,则cos620°的值为()
A.kB.-kC.±kD.不确定B[cos620°=cos(360°+260°)=cos260°=cos(270°-10°)=-sin10°=-k.]3.已知sinα-π4=13,则cosπ4+α等于(
)A.-13B.13C.223D.-223A[cosπ4+α=cosα-π4+π22=-sinα-π4=-13.故选A.]4.若sin(180°+α)+cos(90
°+α)=-a,则cos(270°-α)+2sin(360°-α)的值是()A.-2a3B.-3a2C.2a3D.3a2B[由sin(180°+α)+cos(90°+α)=-a,得-sinα-sinα=-a,即sinα=a2,cos(270°-α)+2sin(
360°-α)=-sinα-2sinα=-3sinα=-32a.]5.化简:sinθ-5πcos-π2-θcos8π-θsinθ-3π2sin-θ-4π=()A.-sinθB.sinθC.cosθD.-cosθA[原式=sinθ-πcos
π2+θcosθcosθsin-θ=-sinθ-sinθcosθcosθ-sinθ=-sinθ.]二、填空题6.化简sin(π+α)cos3π2+α+sinπ2+αcos(π+α)=________.-1[原式=(-sin
α)·sinα+cosα·(-cosα)=-sin2α-cos2α=-1.]7.已知cosπ2+φ=32,且|φ|<π2,则tanφ=________.-3[cosπ2+φ=-sinφ=32,sinφ=-32,
又∵|φ|<π2,∴cosφ=12,故tanφ=-3.]38.已知α是第四象限角,且cos(5°+α)=45,则cos(α-85°)=________.-35[因为α是第四象限角,且cos(5°+α)=45>0,所以5°+α是第四象限角,所以sin(5°+α)=-1-cos25°+α=-
35,所以cos(α-85°)=cos(5°+α-90°)=sin(5°+α)=-35.]三、解答题9.已知角α的终边经过点P45,-35.(1)求sinα的值;(2)求sinπ2-αtanα-πsinα+πcos3π-α的值.[解](
1)因为点P45,-35,所以|OP|=1,sinα=-35.(2)sinπ2-αtanα-πsinα+πcos3π-α=cosαtanα-sinα-cosα=1cosα,由三角函数定义知cosα=45,故
所求式子的值为54.10.求证:2sinθ-3π2cosθ+π2-11-2sin2θ=tan9π+θ+1tanπ+θ-1.[证明]左边=-2cosθ·sinθ-1sin2θ+cos2θ-2sin2θ=-sinθ+cosθ2cosθ+
sinθcosθ-sinθ=sinθ+cosθsinθ-cosθ,4右边=tan8π+π+θ+1tanπ+θ-1=tanπ+θ+1tanπ+θ-1=tanθ+1tanθ-1=sinθcosθ+1sinθcosθ-1=sinθ+cosθs
inθ-cosθ,所以等式成立.[等级过关练]1.若f(cosx)=cos2x,则f(sin15°)的值为()A.-32B.32C.-12D.12A[因为f(sin15°)=f(cos75°)=cos150°=-32.]2.计算si
n21°+sin22°+sin23°+…+sin289°=()A.89B.90C.892D.45C[原式=(sin21°+sin289°)+(sin22°+sin288°)+…+(sin244°+sin246°)+sin245°=44+12=8
92.]3.已知sinθ+cosθsinθ-cosθ=2,则sin(θ-5π)sin32π-θ=________.310[∵sinθ+cosθsinθ-cosθ=2,sinθ=3cosθ,∴tanθ=3.sin(θ-5π)sin32π-θ=sinθcosθ=sin
θcosθsin2θ+cos2θ=tanθtan2θ+1=310.]4.已知锐角α终边上一点P的坐标是(2sin2,-2cos2),则α等于________.52-π2[cosα=2sin22sin22+-2cos22=sin2,∵α为锐角,∴α=2-π2.]5.已知f(α)=ta
nπ-αcos2π-αsinπ2+αcos-α-π.(1)化简f(α);(2)若fπ2-α=-35,且α是第二象限角,求tanα.[解](1)f(α)=tanπ-αcos2π-α
sinπ2+αcos-α-π=-tanα·cosα·cosα-cosα=sinα.(2)由sinπ2-α=-35,得cosα=-35,又α是第二象限角,所以sinα=1-cos2α=45,则tanα=sinαcosα=-43.