【文档说明】数学高中必修第一册《4.4 对数函数》导学案-统编人教A版.docx,共(7)页,252.405 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-115617.html
以下为本文档部分文字说明:
1第四章指数函数与对数函数4.4.3不同增长函数的差异1.了解指数函数、对数函数、线性函数(一次函数)的增长差异.2.理解对数增长、直线上升、指数爆炸。重点:函数增长快慢比较的常用方法;难点:了解影响函数增长快慢的因素;三种函数模型的性质y=ax(a>1)y=logax(a>1)
y=xn(n>0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴——平行随x增大逐渐近似与x——轴平行随n值而不同增长速度①y=ax(a>1):随着x的增大,y增长速度越来越快,会远远大于y=xn(n>0)的增长速度,y=logax
(a>1)的增长速度越来越慢②存在一个x0,当x>x0时,有ax>x——n>logx增函数;增函数;增函数;y轴;x轴;越来越快;越来越慢;ax>xn>logax我们看到,一次函数与指数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不
同增长规律的反映.因此,如果把握了不同函数增长方式的差异,那么就可以根据现实问题的增长情况,选择合适的函数模型刻画其变化规律.下面就来研究一次函数、指数函数和对数函数增长方式的差异.提出问题虽然它们都是增函数,但增长方式存在很大差异,这种差异正
是不同类型现实问题具有不同增长规律的反映.我们仍然采用由特殊到一般,由具体到抽象的研究方法.2下面就来研究一次函数f(x)=kx+b,k>0,指数函数g(x)=ax(a>1),对数函数在定义域内增长方式的差异.问题探究以函
数y=2x与y=2x为例研究指数函数、一次函数增长方式的差异.分析:(1)在区间(-∞,0)上,指数函数y=2x值恒大于0,一次函数y=2x值恒小于0,所以我们重点研究在区间(0,+∞)上它们的增长差异.(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:xy=2xy=2x0100.
51.41411221.52.82832442.55.6575386·········(3)观察两个函数图象及其增长方式:结论1:函数y=2x与y=2x有两个交点(1,2)和(2,4)结论2:在区间(0,1)上,函数y=2x的图象位于y=2x之上结论3:在区
间(1,2)上,函数y=2x的图象位于y=2x之下结论4:在区间(2,3)上,函数y=2x的图象位于y=2x之上综上:虽然函数y=2x与y=2x都是增函数,但是它们的增长速度不同,函数y=2x的增长速度不变,但是y=2x的增长速度改变,先慢
后快.xyO3请大家想象一下,取更大的x值,在更大的范围内两个函数图象的关系?思考:随着自变量取值越来越大,函数y=2x的图象几乎与x轴垂直,函数值快速增长,函数y=2x的增长速度保持不变,和y=2x的增长相比几乎微不足道.归纳总结总结一:函数y=2x与y=2x在[0,
+∞)上增长快慢的不同如下:虽然函数y=2x与y=2x在[0,+∞)上都是单调递增,但它们的增长速度不同.随着x的增大,y=2x的增长速度越来越快,会超过并远远大于y=2x的增长速度.尽管在x的一定范围内,2x<2x,但由于y=2x的增长最终会快于y
=2x的增长,因此,总会存在一个x0,当x>x0时,恒有2x>2x.总结二:一般地指数函数y=ax(a>1)与一次函数y=kx(k>0)的增长都与上述类似.即使k值远远大于a值,指数函数y=ax(a>1)虽然有一段区间会小于y=kx
(k>0),但总会存在一个x0,当x>x0时,y=ax(a>1)的增长速度会大大超过y=kx(k>0)的增长速度.跟踪训练xy(2,4)(1,2)1212345678Oxy1212345678O41.四个变量y1,y2,y3,y4随变量x变
化的数据如表:x151015202530y1226101226401626901y22321024377681.05×1063.36×1071.07×109y32102030405060y424.3225.3225.9076.3226.644
6.907关于x呈指数函数变化的变量是________.答案:y2[以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出
它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.]分析:(1)在区间(-∞,0)上,对数函数y=lgx没意义,一次函数值恒小于0,所以研究在区间(0,+∞)上它们的增长差异.(2)借助信息技术,在同一直角坐
标系内列表、描点作图如下:xy=lgx0不存在01011201.3012301.4773401.6024501.6995601.7786·········以函数y=lgx与110yx为例研究对数函数、一次函数增长方式的差异.(3)观察两个函数
图象及其增长方式:xy102030405060123456O110yxy=lgx5总结一:虽然函数y=lgx与在(0,+∞)上都是单调递增,但它们的增长速度存在明显差异.在(0,+∞)上增长速度不变,y=lgx在(0
,+∞)上的增长速度在变化.随着x的增大,的图象离x轴越来越远,而函数y=lgx的图象越来越平缓,就像与x轴平行一样.例如:lg10=1,lg100=2,lg1000=3,lg10000=4;111110110010100010010000100
010101010,,,,这表明,当x>10,即y>1,y=lgx比相比增长得就很慢了.思考:将y=lgx放大1000倍,将函数y=1000lgx与比较,仍有上面规律吗?先想象一下,仍然有.110yx110yxxy102030405060123456O110yxy=lgx
xy102030405060123456O110yxy=110yx6总结二:一般地,虽然对数函数与一次函数y=kx(k>0)在(0,上都是单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数
的增长速度越来越慢.不论a值比k值大多少,在一定范围内,可能会大于kx,但由于的增长会慢于kx的增长,因此总存在一个x0,当x>x0时,恒有.跟踪训练1.函数f(x)=lgx,g(x)=0.3x-1的图象
如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).[解](1)C1对应的函数为g(x)=0.3x-1,C2对应的函数
为f(x)=lgx.(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x);当x=x1或x=x2时,f(x)=g(x).1.下列函数中随x的增大而增大且速度最快的是()A.
y=exB.y=lnxC.y=x2D.y=e-xxy211042206330844010550126601477016880189902110023210253202743029540316503376035870379804009042200443104642048
53050640527502110422063308440105501266014770Olog1ayxa7【答案】A[结合指数函数,对数函数及一次函数的图象变化趋势可知A正确.]2.能使不等式log2x<x2<2x一定成立的x的取值区间是(
)A.(0,+∞)B.(2,+∞)C.(-∞,2)D.(4,+∞)【答案】D[当x>4时,log2x<x2<2x,故选D.]3.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②
前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________.【答案】②④[结合图象可知②④正确,故填②④.]4.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+1
00,丙:y=1.005x,则投资500元,1000元,1500元时,应分别选择________方案.【答案】乙、甲、丙[将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.]1.由特殊到一般,由具体到抽象研究了一次函数f(x
)=kx+b,k>0,指数函数g(x)=ax(a>1),对数函数在定义域上的不同增长方式.2.根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的
函数是对数函数.log1ayxa