【文档说明】高中必修第二册数学《6.3 平面向量基本定理及坐标表示》教学设计-统编人教A版.docx,共(7)页,282.449 KB,由小喜鸽上传
转载请保留链接:https://www.ichengzhen.cn/view-114444.html
以下为本文档部分文字说明:
16.3.5平面向量数量积的坐标表示本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第六章《平面向量及其应用》,本节课主要学习平面向量数量积的坐标表示,模、夹角的坐标表示。前面我们学习了平面向量的数量
积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹
角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、
数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础。课程目标学科素养A.掌握平面向量数量积坐标表示及模、夹角的公式。B.能用公式
求向量的数量积、模、夹角;C.掌握两个向量垂直的坐标判断,会证明两向量垂直,以及能解决一些简单问题.1.数学抽象:用数量积判断两个平面向量的垂直关系;2.逻辑推理:证明两向量垂直,以及能解决一些简单问题.3.数学运算:利用平面向量数量积解决有关长度、角度的问
题;4.直观想象:用坐标表示平面向量数量积的有关运算,揭示几何图形与代数运算之间的内在联系。1.教学重点:平面向量数量积坐标表示及模、夹角公式;22.教学难点:平面向量数量积的应用。多媒体教学过程教学设计意图核心素养目标一、复习回顾,温故知新1.
平面向量的数量积(内积)的定义:【答案】||||cos.abab2.两个向量的数量积的性质:【答案】0.cos2babababaaaaaaa,或二、探索新知探究:已知两个非零向量),(),,(221
1yxbyxa,怎样用向量的坐标表示ba?【答案】jyixbjyixa2211,所以22112212212211))(jyyjiyxjiyxixxjyixjyixba(2121yyxx1.数量积的坐
标表示:2121yyxxba,通过复习上节所学知识,引入本节新课。建立知识间的联系,提高学生概括、类比推理的能力。通过探究,让学生数量积的坐标表示,提高学生的解决问题、分析问题的能力。3故两个向量的数量积等于它们对应坐标的乘积的和。思考1:设),(yxa,则用坐标
怎样表示||||2aa和?【答案】22222||,||yxayxa思考2.表示a的有向线段的起点和终点的坐标分别为),(),,(2211yxyx,那么a的坐标,||a怎么用坐标表示?【答案】212212121
2)()||),,(yyxxayyxxa(思考3.设),(),,(2211yxbyxa,则ba用坐标表示能得到什么结论?【答案】02121yyxxba例1.已知A(1,2),B(2,3
),C(2,5),试判断△ABC的形状,证明你的猜想.思考4:设ba,是两个非零向量,其夹角为θ,若通过思考,让学生会用坐标表示向量的模、垂直,提高学生分析问题、概括能力。通过例题练习数量积的坐标表示,提高学生解决问题的
能力。4),(),,(2211yxbyxa,那么cos如何用坐标表示?【答案】222221212121||||cosyxyxyyxxbaba例2.).1(),4,6(),75,(o精确到间的夹角、及求设bababa例3.用向量方法证明两角差的余弦公式
sinsincoscos)cos(通过思考,推导夹角的坐标表示,提高学生的推理能力。通过例题进一步熟悉向量的应用,提高学生的观察、概括能力,进一步体会向量的工具性。5三、达标检测1.已知a=(1,-1),b=(2,3),则a·b=()A.5B.
4C.-2D.-1【解析】a·b=(1,-1)·(2,3)=1×2+(-1)×3=-1.【答案】D2.已知a=(-2,1),b=(x,-2),且a⊥b,则x的值为()A.-1B.0C.1D.2【解析】由题意,a·b=(-2,1)·(x,-2)=-2x-2=0,解得x=-1.故选A
.通过练习巩固本节所学知识,通过学生解决问题的能力,感悟其中蕴含的数学思想,增强学生的应用意识。6【答案】A3.(2016·邢台期末)平行四边形ABCD中,AB→=(1,0),AC→=(2,2),则AD→·BD→等于()A.-4B
.-2C.2D.4【解析】AD→·BD→=(AC→-AB→)·(AC→-2AB→)=AC2→+2AB2→-3AC→·AB→=8+2-3×2=4.故选D.【答案】D4.已知a=(3,-4),则|a|=________.【解析】因为a=(3,-4),
所以|a|=32+(-4)2=5.【答案】55.已知向量a=(3,-1),b=(1,-2),求:(1)a·b;(2)(a+b)2;(3)(a+b)·(a-b).【解】(1)因为a=(3,-1),b=(1,-2),所以a·b=3×1+(-1)×(-2)=3+2=5.(2)a+b=(3
,-1)+(1,-2)=(4,-3),所以(a+b)2=2||ab+=42+(-3)2=25.(3)a+b=(3,-1)+(1,-2)=(4,-3),a-b=(3,-1)-(1,-2)=(2,1),7结合本节教材浅显易懂,又有前面平面向量
的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是教师为主导,学生为主体,训练为主线的原
则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,在教师的指导下去探索发现问题,解决问题。在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步
地激发了学生的学习兴趣,让他们体验成功的喜悦。(a+b)·(a-b)=(4,-3)·(2,1)=8-3=5.四、小结1.向量数量积的坐标表示;2.向量的模的坐标表示,向量垂直的充要条件;3.向量的夹角公式的坐标表示;五、作业习题6.31
0,14题通过总结,让学生进一步巩固本节所学内容,提高概括能力,提高学生的数学运算能力和逻辑推理能力。