【文档说明】备考2019高考数学二轮复习选择填空狂练七数列求通项求和理201811274180(含答案).doc,共(6)页,424.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-75761.html
以下为本文档部分文字说明:
7数列求通项、求和1.[2018·长春外国语]已知数列na的前n项和21nnS=−,则数列2na的前10项和为()A.1041−B.()21021−C.()101413−D.()101213−2.[2018·辽宁联考]已知
数列na的前n项和为nS,满足21nnSa=−,则na的通项公式na=()A.21n−B.12n−C.21n−D.21n+3.[2018·河油田二高]数列na满足()11nnnaan++=−,则数列na的前20项的和为()A.
100−B.100C.110−D.1104.[2018·阜阳三中]已知数列na的通项公式100nann=+,则122399100aaaaaa−+−++−=()A.150B.162C.180D.2105.[2018·莆田一中]
数列na中,10a=,111nnaann+−=++,9na=,则n=()A.97B.98C.99D.1006.[2018·育才中学]在数列na中,12a=−,111nnaa+=−,则2018a的值为()A.2−B.13C.12D.327.[2018·银川一中]已知nS是数列n
a的前n项和,且13nnnSSa+=++,4523aa+=,则8S=()A.72B.88C.92D.988.[2018·营口开发区一高]在数列na中,已知12a=,()11222nnnaana−−=+,则na等于(
)A.21n+B.2nC.3nD.31n+9.[2018·樟树中学]已知数列()21nann=−*N,nT为数列11nnaa+的前n项和,求使不等式20174035nT成立的最小正整数()A.2016B
.2018C.2017D.201510.[2018·信阳中学]已知直线250xy++=与直线1150xdy−+=互相平行且距离为m,等差数列na的公差为d,且7835aa=,4100aa+,令123nnSaaaa=++++,则mS的值为()A.60B.52C.44
D.36一、选择题11.[2018·双流中学]已知函数()yfx=为定义域R上的奇函数,且在R上是单调递增函数,函数()()5gxfxx=−+,数列na为等差数列,且公差不为0,若()()()12945gag
aga+++=,则129aaa+++=()A.45B.15C.10D.012.[2018·广东六校]已知数列满足()12323213nnaaanan++++=−.设4nnnba=,nS为数列nb的前n项和.若nS
(常数),n*N,则的最小值是()A.32B.94C.3112D.311813.[2018·泰州期末]已知数列na的通项公式为12nnan−=,前n项和为nS,则nS=__________.14.[2018·石室中学]设数列na满足()()112nnnnana
nn+−+=+*N,112a=,na=___________.15.[2018·黑龙江模拟]已知数列na满足:()()112nnnaann−−−=,记nS为na的前n项和,则40S=__________.16.[2018·豫西名校]等差数列na
中,3412aa+=,749S=.若记X表示不超过x的最大整数,(如090=.,2.62=).令lgnnba=,则数列nb的前2000项和为__________.二、填空题1.【答案】C【解析】∵21nnS=−,∴1121nnS++=−,∴()()11121212n
nnnnnaSS+++=−=−−−=,又11211aS==−=,∴数列na的通项公式为12nna−=,∴()221124nnna−−==,∴所求值为()101014141143−=−−,故选C.2.【答案】
B【解析】当1n=时,11121Saa=−=,11a=,当2n时,1122nnnnnaSSaa−−=−=−,12nnaa−=,因此12nna−=,故选B.3.【答案】A【解析】1211aa+=−,34
13aa+=−,5615aa+=−,7817aa+=−,,由上述可知()121920113519aaaa++++=−++++1191101002+=−=−,故选A.4.【答案】B【解析】由对勾函数的性质可知:当10n时,
数列na为递减;当10n时,数列na为递增.所以122310099aaaaaa−+−++−()()()()()()1223910111012111009911010010aaaaaaaaaaaaaaaa=−+−++−+−+−++−=−+−()()()1100101010011010
162+−+++−+=,故选B.5.【答案】D【解析】由1111nnaannnn+−==+−++,()()()1213211naannn=−+−++−−=−−,10a=,19nan=−=,10n=,100n=,故选D.6.【
答案】D答案与解析一、选择题【解析】由题意得12a=−,111nnaa+=−,∴213122a=+=,321133a=−=,4132a=−=−,,∴数列na的周期为3,∴201836722232aaa+===,故选D.7.【答案】C【解析】13nnnSSa+=++,113nnnnSSaa+
+−=+=,13nnaa+−=,na是公差为3d=的等差数列.又4523aa+=,可得:12723ad+=,解得11a=,81878922Sad=+=,故选C.8.【答案】B【解析】将等式1122nnnaaa−−=
+两边取倒数得到11112nnaa−=+,11112nnaa−−=,1na是公差为12的等差数列,1112a=,根据等差数列的通项公式的求法得到()1111222nnna=+−=,故2nan=,故答案为B.9.【答案】C【解析】已知数列()21nann=−*N
,()()111111212122121nnaannnn+==−−+−+,11111111112335212122121nnTnnnn=−+−++−=−=−
+++.不等式20174035nT,即2017214035nn+,解得2017n.∴使得不等式成立的最小正整数n的值为2017,故选C.10.【答案】B【解析】由两直线平行得2d=−,由两平行直线间
距离公式得211551012m−+==,()77235aa−=,得75a=−或77a=,410720aaa+=,75a=−,29nan=−+,31101207531135791152Saaaa=++++=++++−+−+−+−+−+−=,故选B.11
.【答案】A【解析】函数()yfx=为定义域R上的奇函数,则()()fxfx−=−,关于点()0,0中心对称,那么()5yfx=−关于点()5,0−中心对称,由等差中项的性质和对称性可知:1955552aaa−+−=−,故()()19550f
afa−+−=,由此()()()()()()()2837465555555250fafafafafafafa−+−=−+−=−+−=−=,由题意:()()5gxfxx=−+,若()()()()()()12912912955545g
agagafafafaaaa+++=−+−++−++++=,则12945aaa+++=,故选A.12.【答案】C【解析】()12323213nnaaanan++++=−①当2n时,类比写出()()112
31231233nnaaanan−−++++−=−②由①-②得143nnnan−=,即143nna−=.当1n=时,134a=,131432nnnan−==,141323nnnbnn−==,21
0214231123333333333nnnnnS−−=++++=+++++③231111231+3933333nnnnnS−−=+++++④③-④得,0231112211111231393333339313nnnnnnnS−−=++++++−=+−−,316931124312nnnS
+=−,nS(常数),n*N,的最小值是3112,故选C.13.【答案】()121nn−+【解析】由题意得()01221122232122nnnSnn−−=++++−+,①∴()12312122232122
nnnSnn−=++++−+,②①②,得23112122222212nnnnnSnn−−−=+++++−=−−()121nn=−−,∴()121nnSn=−+.二、填空题14.【答案】21nnan=+【解析】()()112nnnnanann+−+
=+*N,()()111112112nnaannnnnn+−==−+++++11111nnaannnn−−=−−+,,21112123aa−=−,累加可得11121naann−=−+,112a=,1111nannnn=−=++,21n
nan=+,故答案为21nnan=+.15.【答案】440【解析】由()()112nnnaann−−−=可得:当2nk=时,有2212kkaak−−=,①当21nk=−时,有212221kkaak−−+=−,②当21nk=+时,有21221k
kaak++=+,③+①②有:22241kkaak−+=−,③-①有:21211kkaa+−+=,则:()()40135739246840Saaaaaaaaaa=+++++++++++()109110715231071084402=++++=++=,故答案为44
0.16.【答案】5445【解析】设等差数列na的公差为d,∵3412aa+=,749S=,∴12512ad+=,1767492ad+=,解得11a=,2d=.∴()12121nann=+−=−,()lglg21nnban==−,1n=,2,3,4,5时,
0nb=.650n时,1nb=;51500n时,2nb=;5012000n时,3nb=.∴数列nb的前2000项和454502150035445=++=.故答案为5445.