【文档说明】备考2019高考数学二轮复习选择填空狂练七数列求通项求和文201811274181(含答案).doc,共(6)页,426.000 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-75610.html
以下为本文档部分文字说明:
7数列求通项、求和1.[2018·长春外国语]已知数列na的前n项和21nnS,则数列2na的前10项和为()A.1041B.21021C.101413D.1012132.[2018·辽宁联考]已知数列na的前n项和
为nS,满足21nnSa,则na的通项公式na()A.21nB.12nC.21nD.21n3.[2018·河油田二高]数列na满足11nnnaan,则数列na的前20项的和为()A.100B.100C.110D.1104.[2018·阜阳三中]已知数列
na的通项公式100nann,则122399100aaaaaa()A.150B.162C.180D.2105.[2018·莆田一中]数列na中,10a,111nnaann,9na,则n()A.97B.98C.99D.1006.[2018·育
才中学]在数列na中,12a,111nnaa,则2018a的值为()A.2B.13C.12D.327.[2018·银川一中]已知nS是数列na的前n项和,且13nnnSSa
,4523aa,则8S()A.72B.88C.92D.988.[2018·营口开发区一高]在数列na中,已知12a,11222nnnaana,则na等于()A.21nB.2nC.3nD.31n
9.[2018·樟树中学]已知数列21nann*N,nT为数列11nnaa的前n项和,求使不等式20174035nT成立的最小正整数()A.2016B.2018C.2017D.2015
10.[2018·信阳中学]已知直线250xy与直线1150xdy互相平行且距离为m,等差数列na的公差为d,且7835aa,4100aa,令123nnSaaaa,则mS的值为()A.60B.5
2C.44D.36一、选择题11.[2018·双流中学]已知函数yfx为定义域R上的奇函数,且在R上是单调递增函数,函数5gxfxx,数列na为等差数列,且公差不为0,若12945gagaga
,则129aaa()A.45B.15C.10D.012.[2018·广东六校]已知数列满足12323213nnaaanan.设4nnnba,nS为数列nb的前n项和.若nS(常数),n*N,则的最小值是()A.32B.94C.3112D.311813
.[2018·泰州期末]已知数列na的通项公式为12nnan,前n项和为nS,则nS__________.14.[2018·石室中学]设数列na满足112nnnnanann*N,112a,na___________.15.[2018·黑龙江
模拟]已知数列na满足:112nnnaann,记nS为na的前n项和,则40S__________.16.[2018·豫西名校]等差数列na中,3412aa,749S.若记X表示不超过x的最大整数,(如090.,2.62
).令lgnnba,则数列nb的前2000项和为__________.二、填空题1.【答案】C【解析】∵21nnS,∴1121nnS,∴11121212nnnnnnaSS
,又11211aS,∴数列na的通项公式为12nna,∴221124nnna,∴所求值为101014141143,故选C.2.【答案】B【解析】当1n时,11121Saa,11
a,当2n时,1122nnnnnaSSaa,12nnaa,因此12nna,故选B.3.【答案】A【解析】1211aa,3413aa,5615aa,7817aa,,由上述可知121920113519aaaa
1191101002,故选A.4.【答案】B【解析】由对勾函数的性质可知:当10n时,数列na为递减;当10n时,数列na为递增.所以122310099aaaaaa12
23910111012111009911010010aaaaaaaaaaaaaaaa1100101010011010162,故选B.5.【答案】D【解析】由1111nnaannnn
,1213211naannn,10a,19nan,10n,100n,故选D.6.【答案】D答案与解析一、选择题【解析】由题意得12a,111nnaa,∴213122a,321133a
,4132a,,∴数列na的周期为3,∴201836722232aaa,故选D.7.【答案】C【解析】13nnnSSa,113nnnnSSaa,13nnaa,na是公差为3d的等差数列.又
4523aa,可得:12723ad,解得11a,81878922Sad,故选C.8.【答案】B【解析】将等式1122nnnaaa两边取倒数得到11112nnaa,11112nnaa,1na是公差为12的等差数列,11
12a,根据等差数列的通项公式的求法得到1111222nnna,故2nan,故答案为B.9.【答案】C【解析】已知数列21nann*N,111111212122121nnaannnn,1111111111233521212212
1nnTnnnn.不等式20174035nT,即2017214035nn,解得2017n.∴使得不等式成立的最小正整
数n的值为2017,故选C.10.【答案】B【解析】由两直线平行得2d,由两平行直线间距离公式得211551012m==,77235aa,得75a或77a,410720aaa,75a,29nan,311012075311357911
52Saaaa,故选B.11.【答案】A【解析】函数yfx为定义域R上的奇函数,则fxfx,关于点0,0中心对称,那么5yfx关于点5,0中心
对称,由等差中项的性质和对称性可知:1955552aaa,故19550fafa,由此2837465555555250fafafafafafafa,由题意:
5gxfxx,若12912912955545gagagafafafaaaa,则12945aaa,故选A.12.【答案】C【解析】1
2323213nnaaanan①当2n时,类比写出11231231233nnaaanan②由①-②得143nnnan,即143nna.当1n时,134a,131432nnnan
,141323nnnbnn,210214231123333333333nnnnnS③231111231+3933333nnnnnS
④③-④得,0231112211111231393333339313nnnnnnnS,316931124312nnnS,nS(常数),n*N,的最小值是3112,故选C.13.【答案】121nn【解析】由题意得012211222
32122nnnSnn,①∴12312122232122nnnSnn,②①②,得23112122222212nnnnnSnn121nn,∴121nnSn.二、填空题14.【
答案】21nnan【解析】112nnnnanann*N,111112112nnaannnnnn11111nnaannnn,,21112123aa,累加可得11121naann
,112a,1111nannnn,21nnan,故答案为21nnan.15.【答案】440【解析】由112nnnaann可得:当2nk时,有2212kkaak,①当21nk时,有212221kkaak
,②当21nk时,有21221kkaak,③①②有:22241kkaak,③-①有:21211kkaa,则:40135739246840Saaaaaaaaaa
109110715231071084402,故答案为440.16.【答案】5445【解析】设等差数列na的公差为d,∵3412aa,749S,∴12512
ad,1767492ad,解得11a,2d.∴12121nann,lglg21nnban,1n,2,3,4,5时,0nb.650n时,1nb;51500n时,2nb;501200
0n时,3nb.∴数列nb的前2000项和454502150035445.故答案为5445.