高考物理二轮复习题型专练 8.2磁吃运动电荷的作用(含解析)

DOC
  • 阅读 69 次
  • 下载 0 次
  • 页数 17 页
  • 大小 454.000 KB
  • 2022-11-25 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
此文档由【MTyang资料小铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
高考物理二轮复习题型专练 8.2磁吃运动电荷的作用(含解析)
可在后台配置第一页与第二页中间广告代码
高考物理二轮复习题型专练 8.2磁吃运动电荷的作用(含解析)
可在后台配置第二页与第三页中间广告代码
高考物理二轮复习题型专练 8.2磁吃运动电荷的作用(含解析)
可在后台配置第三页与第四页中间广告代码
高考物理二轮复习题型专练 8.2磁吃运动电荷的作用(含解析)
高考物理二轮复习题型专练 8.2磁吃运动电荷的作用(含解析)
还剩5页未读,继续阅读
【这是免费文档,您可以免费阅读】
/ 17
  • 收藏
  • 违规举报
  • © 版权认领
下载文档2.00 元 加入VIP免费下载
文本内容

【文档说明】高考物理二轮复习题型专练 8.2磁吃运动电荷的作用(含解析) .doc,共(17)页,454.000 KB,由MTyang资料小铺上传

转载请保留链接:https://www.ichengzhen.cn/view-48752.html

以下为本文档部分文字说明:

专题8.2磁场对运动电荷的作用1.图中a、b、c、d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。一带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是()A.向上

B.向下C.向左D.向右答案:B2.一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动。则下列能表示运动周期T与半径R之间的关系图象的是()答案:D解析:带电粒子在匀强磁场中做匀速圆周运动时,qvB=mv2R⇒R=

mvqB,由圆周运动规律,T=2πRv=2πmqB,可见粒子运动周期与半径无关,故D项正确。3.图为云室中某粒子穿过铅板P前后的轨迹(粒子穿过铅板后电荷量、质量不变),室中匀强磁场的方向与轨道所在平面垂直(图中垂直

于纸面向内),由此可知此粒子()A.一定带正电B.一定带负电C.不带电D.可能带正电,也可能带负电答案:A解析:粒子穿过铅板的过程中,动能减小,轨道半径减小,根据题图中粒子的运动轨迹可以确定粒子从下向上穿过铅板,再由左手定则可判断出粒子一

定带正电。选项A正确。4.如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速度沿与x轴成30°角从原点射入磁场,则正、负电子在磁场中运动时间之比为()A.1︰2B.2︰1C.1︰3D.1︰

1答案:B5.如图所示圆形区域内,有垂直于纸面方向的匀强磁场,一束质量和电荷量都相同的带电粒子,以不同的速率,沿着相同的方向,对准圆心O射入匀强磁场,又都从该磁场中射出,这些粒子在磁场中的运动时间有的较长,有的较短,若带电粒子在磁场中

只受磁场力的作用,则在磁场中运动时间越长的带电粒子()A.速率一定越小B.速率一定越大C.在磁场中通过的路程越长D.在磁场中的周期一定越大答案:A解析:根据公式T=2πmBq可知,粒子的比荷相同,它们进入匀强磁场后做匀速圆周运动的周期相同,选项D错误;如图所示,设这些粒子在磁场中的运动圆弧所对

应的圆心角为θ,则运动时间t=θ360°T,在磁场中运动时间越长的带电粒子,圆心角越大,运动半径越小,根据r=mvBq可知,速率一定越小,选项A正确,B错误;当圆心角趋近180°时,粒子在磁场中通过的路程趋近于0,所以

选项C错误。6.某一空间充满垂直纸面方向的匀强磁场,其方向随时间做周期性变化,磁感应强度B随时间t的变化规律如图所示,规定B>0时磁场的方向穿出纸面。现有一电荷量为q=5π×10-7C、质量为m=5×10-10kg的带电粒子在t=0时刻以初速度v0沿垂直磁

场方向开始运动,不计重力,则磁场变化一个周期的时间内带电粒子的平均速度的大小与初速度大小的比值是()A.1B.12C.22πD.2π答案:C7.如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直左边界射入,穿过此区域的时间为t。若加上磁感应强度为B、垂

直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60°。利用以上数据可求出下列物理量中的()A.带电粒子的比荷B.带电粒子在磁场中运动的周期C.带电粒子的初速度D.带电粒子在磁场中运动的半径答案:AB8.如图所示,宽d=4cm的有界匀强磁场,纵向范围足够大

,磁感应强度的方向垂直于纸面向内,现有一群正粒子从O点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r=10cm,则()A.右边界:-8cm<y<8cm有粒子射出B.右边界:y<8cm有粒子射出C

.左边界:y>8cm有粒子射出D.左边界:0<y<16cm有粒子射出答案:AD解析:当粒子沿x轴正方向和y轴负方向射入磁场时,粒子从右边界射出的边界最大,画出粒子的运动轨迹(如图所示)并根据几何关系可求出,在右边界-8cm<y<8cm范围内有粒子射出,A项正确,B项错误;当粒子斜向上

进入磁场,运动轨迹与右边界相切时,可求出粒子从左边界y=16cm处射出,这也是最大边界处,所以C项错误,D项正确。本题答案为A、D两项。9.如图所示为一个有界的足够大的匀强磁场区域,磁场方向垂直纸面向里,一个不计重力的带正电的离子以某一速率v垂直磁场方向从O点进入

磁场区域,电子进入磁场时速度方向与边界夹角为θ,下列有关说法正确的是()A.若θ一定,速度v越大,粒子在磁场中运动的时间越长B.粒子在磁场中运动的时间与速度v有关,与θ角大小无关C.若速度v一定,θ越大,粒子在磁场中运动的时间越短D.粒子在磁场中运动的时间与角度θ有关,与速

度v无关答案:CD10.如图所示,在xOy平面内有一半径为a的圆形区域,其圆心O'的坐标为(2a,0),与x轴交点为M、N,该区域内无磁场;在y轴和直线x=3a之间的其他区域内存在垂直纸面向外的匀强磁场,磁感应强度大小为B,一质量为m、电荷量为+q的粒子从y轴上某点以与y轴正向的夹角为

60°方向射入磁场,不计粒子重力,下列说法正确的是()A.若粒子不经过圆形区域就能到达N点,则粒子的初速度大小为2qBamB.若粒子不经过圆形区域就能到达N点,则粒子的初速度大小为3qBamC.若粒子在磁场中运动的时间为πm3qB,且粒子

能到达N点,则粒子的初速度大小为3qBa2mD.若粒子在磁场中运动的时间为π3qB,且粒子能到达N点,则粒子的初速度大小为3qBa2m答案:AC11.如图所示,匀强磁场方向垂直纸面向里,甲、乙、丙、丁四个带负电的点电荷分别沿四个方向、以大小相同

的初速度v0垂直磁场方向进入磁场.则进入磁场瞬间,受到洛伦兹力方向向下的点电荷是()A.甲B.乙C.丙D.丁【答案】D【解析】根据左手定则分析,丁受到的洛伦兹力方向向下,故选项D正确.12.两个质量相同、所带电荷量相等的

带电粒子a、b,以不同的速率对准圆心O沿着AO方向射入圆形匀强磁场区域,其运动轨迹如图所示.若不计粒子的重力,则下列说法正确的是()A.a粒子带正电,b粒子带负电B.a粒子在磁场中所受洛伦兹力较大C.b粒子的动能较大D.b粒子在磁场中运动时间

较长13.(多选)如图所示,a、b、c是三个面积相等的匀强磁场区域,图中的虚线是三个圆直径的连线,该虚线与水平方向的夹角为45°.一个不计重力的带电粒子,从a磁场的M点以初速度v0竖直向上射入磁场,运动轨迹如图,最后粒子从c磁场的N点离开磁场.已知粒子的质量为m,电荷量为q,匀强磁场的磁

感应强度为B.则()A.磁场a和c的方向垂直于纸面向里,磁场b的方向垂直于纸面向外B.粒子在N的速度方向水平向左C.粒子从M点运动到N点的时间为3πm2qBD.粒子从M点运动到N点的时间为6πmqB【答案】BC【解析】不知道带电粒子的电性,所以无法判断磁场的

方向,A项错误;根据几何关系,粒子在N的速度方向水平向左,B项正确;粒子从M点运动到N点的时间为四分之三个周期,由T=2πrv,可得T=2πmqB,所以时间t=34T=3πm2qB,C项正确,D项错误.14.已知通入电流为I的长直导线在周围某点产生的磁感应强度大小B与该点到导线间的距

离r的关系为B=kIr(k为常量).如图所示,竖直通电长直导线中的电流I方向向上,绝缘的光滑水平面上P处有一带正电小球从图示位置以初速度v0水平向右运动,小球始终在水平面上运动,运动轨迹用实线表示,若从上向下看,则小球的运动轨迹可能是()15.如图所示,在x>0,y>0的空间中有恒定的匀强磁

场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电荷量为q的带正电粒子,从x轴上的某点P沿着与x轴正方向成30°角的方向射入磁场.不计重力的影响,则下列有关说法中正确的是()图9­2­23A.只要粒子的速率合适,粒子就可能通过坐

标原点B.粒子在磁场中运动所经历的时间一定为5πm3qBC.粒子在磁场中运动所经历的时间可能为πmqBD.粒子在磁场中运动所经历的时间可能为πm6qB【答案】C【解析】带正电的粒子从P点沿与x轴正方向成30°角的方向

射入磁场中,则圆心在过P点与速度方向垂直的直线上,如图所示,粒子在磁场中要想到达O点,转过的圆心角肯定大于180°,因磁场有边界,故粒子不可能通过坐标原点,故选项A错误;由于P点的位置不确定,所以粒子在磁场中运动的圆弧对应的圆心角也不同,最大的圆心角是圆弧与y轴相切时即300°,

运动时间为56T,而最小的圆心角为P点在坐标原点即120°,运动时间为13T,而T=2πmqB,故粒子在磁场中运动所经历的时间最长为5πm3qB,最短为2πm3qB,选项C正确,B、D错误.16.(多选)如

图所示,两方向相反、磁感应强度大小均为B的匀强磁场被边长为L的等边三角形ABC理想分开,三角形内磁场垂直纸面向里,三角形顶点A处有一质子源,能沿∠BAC的角平分线发射速度不同的质子(质子重力不计),所有

质子均能通过C点,质子比荷qm=k,则质子的速度可能为()A.2BkLB.BkL2C.3BkL2D.BkL817.(多选)如图所示,xOy平面的一、二、三象限内存在垂直纸面向外,磁感应强度B=1T的匀强磁场,ON为处于y轴负方向的弹性绝缘薄挡板,长度为9m,M点为x轴正方向上一点,OM=3

m.现有一个比荷大小为qm=1.0C/kg可视为质点带正电的小球(重力不计)从挡板下端N处小孔以不同的速度向x轴负方向射入磁场,若与挡板相碰就以原速率弹回,且碰撞时间不计,碰撞时电荷量不变,小球最后都能经过M点,则小球射入的速度大小可能是()图9

­2­25A.3m/sB.3.75m/sC.4m/sD.5m/s18.如图所示,矩形虚线框MNPQ内有一匀强磁场,磁场方向垂直纸面向里.a、b、c是三个质量和电荷量都相等的带电粒子,它们从PQ边上的中点沿垂直于磁场的方向射入磁场,图中画出了它们在磁场中的运动轨迹.粒子重力不计.下列说法

正确的是()A.粒子a带负电B.粒子c的动能最大C.粒子b在磁场中运动的时间最长D.粒子b在磁场中运动时的向心力最大【答案】D【解析】由左手定则可知,a粒子带正电,故A错误;由qvB=mv2r,可得r=mvqB,由题图可知粒子c的轨迹半径最小,粒子b的轨迹半径最大,又m、q、B相同,所以粒

子c的速度最小,粒子b的速度最大,由Ek=12mv2,知粒子c的动能最小,根据洛伦兹力提供向心力有f向=qvB,则可知粒子b的向心力最大,故D正确,B错误;由T=2πmqB,可知粒子a、b、c的周期相同,但是粒子b的轨迹所对的圆心角最小,则粒子b在磁场中运动的时间最短,故C错误.19.如图所示

,横截面为正方形abcd的有界匀强磁场,磁场方向垂直纸面向里.一束电子以大小不同、方向垂直ad边界的速度飞入该磁场,不计电子重力及相互之间的作用,对于从不同边界射出的电子,下列判断错误的是()A.从ad边射出的电子在磁场中运动的时间都相等B.从c点离开的电子在磁场中运动

时间最长C.电子在磁场中运动的速度偏转角最大为πD.从bc边射出的电子的速度一定大于从ad边射出的电子的速度20.(多选)图中的虚线为半径为R、磁感应强度大小为B的圆形匀强磁场的边界,磁场的方向垂直圆平面向里.大量的比荷均为qm的相同粒子由磁场边界的最低点A向圆平面内的

不同方向以相同的速度v0射入磁场,粒子在磁场中做半径为r的圆周运动,经一段时间的偏转,所有的粒子均由圆边界离开,所有粒子的出射点的连线为虚线边界的13,粒子在圆形磁场中运行的最长时间用tm表示,假设qm、R、v0为已知量,其余的量均为未知量,忽略粒子的重力以及粒子间的相

互作用.则()A.B=23mv03qBB.B=3mv03qRC.r=3R2D.tm=3πR2v021.如图所示,中轴线PQ将矩形区域MNDC分成上下两部分,上部分充满垂直于纸面向外的匀强磁场,下部分充满垂直于纸面向内的匀强磁场,磁

感应强度大小均为B.一质量为m、带电荷量为q的带正电粒子从P点进入磁场,速度与边MC的夹角θ=30°.MC边长为a,MN边长为8a,不计粒子重力.求:(1)若要该粒子不从MN边射出磁场,其速度最大值是多少?(2)若要该粒子

恰从Q点射出磁场,其在磁场中的运行时间最短是多少?【解析】(1)设该粒子恰好不从MN边射出磁场时的轨迹半径为r,则由几何关系得rcos60°=r-a2,解得r=a又由qvB=mv2r,解得最大速度为vm

ax=qaBm.【答案】(1)qaBm(2)10πm3qB22.如图所示,在圆心为O的圆形区域内存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场.边界上的一粒子源A,向磁场区域发射出质量为m、带电荷量为q(q>0)的粒子

,其速度大小均为v,方向垂直于磁场且分布在AO右侧α角的范围内(α为锐角).磁场区域的半径为mvBq,其左侧有与AO平行的接收屏,不计带电粒子所受重力和相互作用力,求:(1)沿AO方向入射的粒子离开磁场时的方向与入射方向的夹角;(2)接收屏上能接

收到带电粒子区域的宽度.【解析】(1)根据带电粒子在磁场中的运动规律,可知粒子在磁场中沿逆时针方向做圆周运动,设其半径为R,有qBv=mv2R,得R=mvqB可知,带电粒子运动半径与磁场区域半径相等.沿

AO射入磁场的粒子离开磁场时的方向与入射方向之间的夹角为π2,如图所示.(2)设粒子入射方向与AO的夹角为θ,粒子离开磁场的位置为A′,粒子做圆周运动的圆心为O′.根据题意可知四边形AOA′O′四条边长度均为mvBq,是菱形,有O′A′∥OA,故粒子出射方向必然垂直于OA,然

后做匀速直线运动垂直击中接收屏,如图所示.【答案】(1)π2(2)mvsinαqB23.如图所示,在空间有一坐标系xOy,直线OP与x轴正方向的夹角为30°,第一象限内有两个大小不同、方向都垂直纸面向外的匀强磁场区域Ⅰ和Ⅱ,直线OP是它们的边

界,OP上方区域Ⅰ中磁场的磁感应强度为B。一质量为m、电荷量为q的质子(不计重力)以速度v从O点沿与OP成30°角的方向垂直于磁场进入区域Ⅰ,质子先后通过磁场区域Ⅰ和Ⅱ后,恰好垂直打在x轴上的Q点(图中未画出),试求:(1)区域Ⅱ中磁场的磁感应强度大小;(2)Q点的坐标。答案

:(1)2B(2)3+12mvqB,0解析:(1)设质子在磁场Ⅰ和Ⅱ中做圆周运动的轨道半径分别为r1和r2,区域Ⅱ中磁感应强度为B′,由牛顿第二定律知qvB=mv2r1①qvB′=mv2r2②(2

)Q点坐标x=OAcos30°+r2故x=(3+12)mvqB。24.如图所示,虚线圆所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B。一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动方向与原入射方向成θ角。设电子质量为m,电荷量为e,不计电子之

间相互作用力及所受的重力,求:(1)电子在磁场中运动轨迹的半径R;(2)电子在磁场中运动的时间t;(3)圆形磁场区域的半径r。答案:(1)mveB(2)mθeB(3)mveBtanθ2解析:(1)由牛顿第二

定律和洛伦兹力公式得evB=mv2R解得R=mveB。25.如图,虚线OL与y轴的夹角θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。粒子在磁场中运动的轨道半径为R。粒子

离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R。不计重力。求M点到O点的距离和粒子在磁场中运动的时间。答案:(1+33)R或(1-33)Rπm6qB或πm2qB解析:根据题意,带电粒子进入磁场后做圆

周运动,运动轨迹交虚线OL于A点,圆心为y轴上的C点,AC与y轴的夹角为α,粒子从A点射出后,运动轨迹交x轴于P点,与x轴的夹角为β,如图所示。有qvB=mv2R周期为T=2πRv联立得T=2πmqB过A点作x、y轴的垂线,垂足分别为B、D。由图中几何关系得AD=RsinαOD=ADcot

60°BP=ODcotβOP=AD+BPα=β由以上五式和题给条件得sinα+13cosα=1解得α=30°或α=90°

MTyang资料小铺
MTyang资料小铺
原创资料,收集整理学习资料,经过精心整理的资料,与大家分享资料。
  • 文档 28312
  • 被下载 112
  • 被收藏 0
相关资源
广告代码123
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:395972555 (支持时间:9:00-21:00) 公众号
Powered by 太赞文库
×
确认删除?