【文档说明】苏科版数学九年级上册期末复习试卷02(含答案).doc,共(14)页,369.500 KB,由MTyang资料小铺上传
转载请保留链接:https://www.ichengzhen.cn/view-27481.html
以下为本文档部分文字说明:
苏科版数学九年级上册期末复习试卷一、选择题1.方程(2)0xx的解是(▲)A.0xB.2xC.0x或2xD.0x或2x2.如图,点A,B,C都在⊙O上,若∠BAC=36°,则∠BOC的度数为(▲)A
.75°B.72°C.64°D.54°3.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好
且发挥稳定的运动员参加比赛,应该选择(▲)A.甲B.乙C.丙D.丁4.下列调查中,不适合采用抽样调查的是(▲)A.了解全国中小学生的睡眠时间B.了解无锡市初中生的兴趣爱好C.了解江苏省中学教师的健康状况D.了解航天飞机各
零部件的质量5.若关于x的一元二次方程042kxx有两个不相等的实数根,那么k的取值范围是(▲)A.k≠0B.k>4C.k<4D.k<4且k≠06.已知圆锥的底面半径为2cm,母线长为5cm,则圆
锥的侧面积是(▲)A.10πcm2B.14πcm2C.20πcm2D.28πcm27.已知正六边形的边长为2,则它的内切圆半径为(▲)A.1B.3C.2D.23(第8题)(第9题)8.如图,在▱ABCD中,E为BC的中点,连接AE、AC,分别交BD于M、N,则BM:DN等
于(▲)A.1:2B.1:3C.2:3D.3:49.如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(▲)A.
πB.22C.2D.210.已知二次函数)0(2>>abcbxaxy与x轴最多有一个交点,现有以下三个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程012cbxax无实数根;③cba24≥0.其中,正确结论的个数为(▲)A.0B.1C.2D.
3二、填空题11.抛物线y=(x+2)2﹣5的顶点坐标是▲.12.用配方法解一元二次方程x2﹣2x﹣4=0时,可变形为ax2)1(的形式,则a的值为▲.13.已知0132xx,则代数式201932aaxax的值为▲.14.某地区2017年
投入教育经费2500万元,2019年计划投入教育经费3025万元.则2017年至2019年,该地区投入教育经费的年平均增长率为▲.15.已知△ABC∽△DEF,其相似比为1:4,则△ABC与△DEF的面积比为▲.(第17题)(第16题)(
第18题)16.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走4米至大树脚底点D处,斜面AB的坡
度(或坡比)i=1:2.4,那么大树CD的高度为▲.17.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为120°,A,B,C都在格点上,则tan∠ABC的值是▲.18.如图,在四边形
ABCD中,∠ABC=90°,AB=3,BC=4,CD=15,DA=510,则BD的长为▲.三、解答题19.(1)计算:60sin3260cos)2(0;(2)化简:2)6818(.20.解方程或不等式组(1)解方程:)3(2)3(2xx;(2)解不等式组:
121,21xx21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,-4).(1)请画出△ABC向左平移6个单位长度后得到的△111CBA;(2)以点O为位似中心,将△ABC缩小为原来的21,得到△222CBA,请在y轴右侧画出△222CBA
,并求出∠222BCA的正弦值.22.快乐的寒假来临啦!小明和小丽计划在假期间去无锡旅游.他们选取鼋头渚(记为A)、梅园(记为B)、锡惠公园(记为C)等三个景点为游玩目标.如果他们各自在三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择鼋头渚(记为A)景
点为第一站的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC
是⊙O的切线;(2)若OB=10,CD=35,求图中阴影部分的面积.OEDCBA24.在某张航海图上,标明了三个观测点的坐标,如图,O(0,0)、B(6,0)、C(6,8),由三个观测点确定的圆形区域是海洋生物保护区.(1)某时刻海面上出现一渔船A,在观测
点O测得A位于北偏东45°,同时在观测点B测得A位于北偏东30°,求观测点B到A船的距离.(7.13)(2)若渔船A由(1)中位置向正西方向航行,是否会进入海洋生物保护区?通过计算回答.(图1)(图2
)(图3)25.某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲8a20200乙201030+0.05x290其中a为常数,且5≤a≤7(1)若产销甲、
乙两种产品的年利润分别为1y万元、2y万元,直接..写出1y、2y与x的函数关系式;(注:年利润=总售价﹣总成本﹣每年其他费用)(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.26.【定义】如图1,点P为∠MON的平分线上一
点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足2OPOBOA,我们就把∠APB叫做∠MON的智慧角.请利用“智慧角”的定义解决下列两个问题:【运用】如图2,已知∠MON=120°,点P为∠MON的平
分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=120°.求证:∠APB是∠MON的智慧角.【探究】如图3,已知∠MON=(0°<<90°),OP=4,若∠APB是∠MON的
智慧角,连接AB,试用含的代数式分别表示∠APB的度数和△AOB的面积.27.一次函数y=34x的图像如图所示,它与二次函数y=ax2+2ax+c的图像交于A、B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点
C.(1)求点C的坐标;(2)设二次函数图像的顶点为D.若点D与点C关于x轴对称,且△ACD的面积等于316,求此二次函数的关系式.28.已知:如图,菱形ABCD中,对角线AC、BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿B
A方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t
(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE∶S菱形ABCD=17∶40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,
请说明理由.O(备用图)参考答案一、选择题(每小题3分,共30分)1.D2.B3.A4.D5.C6.A7.B8.C9.B10.D二、填空题(每小题2分,共16分)11.(-2,-5)12.513.-201914.10%15.1:1616.1117
.6318.313三、解答题(共84分)19.(1)原式=1+233221„„„„„„„„„„„„„„„„„„„3分=23„„„„„„„„„„„„„„„„„„4分(2)原式=323„„„„„„„„„„„„„„„„„„„„„„3分=35„„„„„„„„„„„„„„„„„„„„„
„4分20.(1)解:(x-3)(x-3-2)=0„„„„„„„„„„„„„„„„„„„„„2分x-3=0,x-5=0„„„„„„„„„„„„„„„„„„„„„„„„3分31x,52x„„„„„„„„„„„„„„„„„„„„„„„4分(2)解:由①得:3x„„„„„„„„„„„„„„
„„„„„„„1分由②得:1x„„„„„„„„„„„„„„„„„„„„„3分∴原不等式组的解集31x„„„„„„„„„„„„„„„„4分21.正确作出△111CBA(正确作出一个点给1分)„„„„„„„„„„„„„3分正确作出△222C
BA(正确作出一个点给1分)„„„„„„„„„„„„„6分求得∠222BCA的正弦值为1010.„„„„„„„„„„„„„„„„„„„8分22.(1)列表得:小丽小明ABCAAAABACBBABBBCCCACBCC„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„
„„„„„„„„4分一共有9种等可能的情况,都选择A为第一站的有1种情况,„„„„„„„„„„„6分所以P(都选择鼋头渚为第一站)=19.„„„„„„„„„„„„„„„„„„„„„8分(画树状图参考给分)23.(1)(1)证明:连接OD,如图,∵BD为∠ABC
平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„2分∵∠C=90°,∴∠ODA=90°,∴AC是⊙O的切线;„„„„„„„„„„„„„4分321G(2
)过O作OG⊥BC,连接OE,则四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=35,在Rt△OBG中,利用勾股定理得:BG=5,∴BE=10,则△OBE是等边三角形,„„„„„„„„„„„„„„„„
„„„„„6分∴阴影部分面积为32535035102136010602.„„„„„„„„„8分24.(1)过点A作AD⊥x轴于点D,依题意,得∠BAD=30°,在Rt△ABD中,设BD=x,则AB=2x,由勾
股定理得,AD=,由题意知:OD=OB+BD=6+x,在Rt△AOD中,OD=AD,6+x=x3„„„„2分∴x=3(3+1),„„„„„„„„„„„„„„„„„„„„„„„„„„3分∴AB=2x=6(3+1)≈
16.2„„„„„„„„4分即:观测点B到A船的距离为16.2.(3)连接CB,CO,则CB∥y轴,∴∠CBO=90°,设O′为由O、B、C三点所确定圆的圆心.则OC为⊙O′的直径.由已知得OB=6,CB=8,由勾股定理得OC=108622
∴半径OO′=5„„„„„„„„„„„„„„„„„„„„„„„„„„„5分过点A作AG⊥y轴于点G.过点O′作O′E⊥OB于点E,并延长EO′交AG于点F.由垂径定理得,OE=BE=3.∴在Rt△OO′E中
,由勾股定理得,O′E=4„„„„„„„„„„„„„„„6分∵四边形FEDA为矩形.∴EF=DA,而AD=x3=9+33∴O′F=9+33-4=5+33„„„„„„„„„„„„„„„„„„„„„„7分∵5+33>5,即O′F>r∴直线AG与⊙O′相离,A船不会进入海洋生物保护区.„„„„
„„„„„„8分25.(1)解:(1)y1=(8-a)x-20,(0<x≤200)„„„„„„„„„„„„„„„„„1分2205.03010xxy=301005.02xx.(0<x≤90).„„„„„„„„„„2分(2)对于y1=(8-a)x-20,∵8-a>0,
∴x=200时,y1的值最大=(1580-200a)万元.„„„„„„„„„„„„„„„„„4分对于470)100(05.022xy,∵0<x≤90,∴x=90时,2y最大值=465万元.„„„„„„„„„„„
„„„„„„„„„„„6分(3)①(1580-200a)=465,解得a=5.575,②(1580-200a)>465,解得a<5.575,③(1580-200a)<465,解得a>5.575,∵5≤a≤7,∴当a=5.575时,生产甲乙两
种产品的利润相同.当5≤a<5.575时,生产甲产品利润比较高.当5.575<a≤7时,生产乙产品利润比较高.„„„„„„„„„„„9分(每种情况1分)26.【运用】证明:∵∠MON=120°,点P为∠MON的平分线上一点,∴6021MONBOPAOP.∵,∴12
0APOOAP.∵120APB,∴120OPBAPO.∴.„„„„„2分∴„„„„„„„„„„„„„„„„„„„„„„„3分.∴OBOPOPOA,即.∴∠APB是∠MON的智慧角.„„„„„„„„„„„„„„„„„„„„4分【探究】∵∠APB是∠MON的智慧角,∴,即OBOPO
POA.∵点P为∠MON的平分线上一点,∴.∴.∴.∴.„„„„„„„„„„6分如图,过点A作AH⊥OB于点H,∴.∵OP=4,∴sin8AOBS.„„„„„„„„„„8分27.解:(1)∵抛物线的对称轴为x=aa22=-1,„„„„„„„„„„„2分∵将x=-1
代入y=34x得:y=34,∴点C的坐标为(-1,34).„„„„„„„„„„„„„„„„„„4分(2)①∵点D与点C关于x轴对称,∴点D的坐标为(-1,-34).„„„„„„„„„„„„„„„„„„5分∴CD=38.设△ACD的CD边上的高为h,则213
8h=316,解得h=4∴点A的横坐标为-4-1=-5,则点A的纵坐标为320)5(34.即A(-5,320)„„„„„„„„„„„„„„„„„„„„„„„„6分设抛物线的解析式为34)1(2xay,„„„„„„„„„„„„„„7分
将A(-5,320)代入得:320=34)1(2xa.解得:21a.„„„„„„„„„„„„„„„„„„„„„„„„„8分∴抛物线的解析式为34)1(212xy.„„„„„„„„„„„„„„„9分28.解:(1)∵四
边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=12AC=6,OB=OD=12BD=8.在Rt△AOB中,AB=2268=10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴DFDC=
QDOD.即10DF=8t,∴DF=54t.„„„„„„„„„„„„„„„„„„„„„„„„1分∵四边形APFD是平行四边形,∴AP=DF.即10-t=54t,„„„„„„„„„„„„„„„„„„„„„„„2分ABFECPDOQG解这个方程,得t=409.答:当t=409s时,四边形APFD是
平行四边形.„„„„„„„„3分(2)过点C作CG⊥AB于点G,∵S菱形ABCD=AB·CG=12AC·BD,即10·CG=12×12×16,∴CG=485.∴S梯形APFD=12(AP+DF)·CG=12(10-t+54t)
·485=65t+48.„„„„„„„„„„4分∵△DFQ∽△DCO,∴QDOD=QFOC.即8t=6QF,∴QF=34t.同理,EQ=34t.∴EF=QF+EQ=32t.∴S△EFD=12EF·QD=12×32t×t=34t2.„„„
„„„„„„„„„5分∴y=(65t+48)-34t2=-34t2+65t+48.„„„„„„„„„„„„6分(3)若S四边形APFE∶S菱形ABCD=17∶40,则-34t2+65t+48=1740×96,即5t2-8t-48=0,解这个方程,得t1=4,t2=-125(舍去)„„„„„
„„„„„„„8分过点P作PM⊥EF于点M,PN⊥BD于点N,ABFECPDOQMN(第24题)当t=4时,∵△PBN∽△ABO,∴PNAO=PBAB=BNBO,即6PN=410=8BN.∴PN=125,BN=165.∴EM=EQ-MQ=1235=35.PM=BD-BN-DQ=161645
=445.在Rt△PME中,PE=22PMEM=22344()()55=19455(cm).„„„„„„„10分说明:第27题的答案不完整,补充如下:注:1.最后:直线y=-43x与抛物线y=-16(x+1)
2-43相切于点A,仍不合题意,应舍去;2.建议抛物线的解析式最后用一般式,因为题目中出现的是一般式.(补充完毕#)